Udayana University, Indonesia
Udayana University, Indonesia
Udayana University, Indonesia
Udayana University, Indonesia
Udayana University, Indonesia
Udayana University, Indonesia
* Corresponding author

Article Main Content

Cervical cancer is a disease characterized by the growth of abnormal cells in the cervical tissue. Cervical cancer is mostly caused by Human Papillomavirus (HPV) types 16 and 18. The role of genetic factors in the development of cervical malignancy is mediated by the presence of a mutation in the HPV 16 oncogene, especially oncogenes E6 and E7. Oncogenic proteins E6 and E7 in HPV initiate dysregulation of cellular proliferation and apoptotic mechanisms by targeting tumor suppressor proteins, such as the p21 protein. The purpose of this study was to assess the association between mutations in the E6 and E7 oncogenes of HPV-HR Type 16 and the pattern of p21 protein expression. This cross-sectional study was conducted at the Obstetrics and Gynecology Polyclinic of Prof. Dr. I.G.N.G. Ngoerah Hospital, from September 2020 to September 2021. The material taken was cervical cancer tissue from cervical cancer patients and then put into a preservative solution and then put in a cooler. DNA isolation was performed, and PCR was performed to determine positive and negative HPV. The amplification of the E6 and E7 genes was carried out before the sequencing and analysis of the E6 and E7 gene mutations was carried out. Then, immunohistochemical staining of p21 was carried out, followed by data analysis using SPSS for windows version 22.0. There were no significant differences in characteristics between the two groups. There was no association between mutations in the E6 and E7 HPV Type 16 oncogenes with p21 protein expression in cervical cancer cases (p-value 0.22).

References

  1. Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol. 2020;10:3116. Published 2020 Jan 21. doi:10.3389/fmicb.2019.03116.
    DOI  |   Google Scholar
  2. Sen P, Ganguly P, Ganguly N. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer. Oncol Lett. 2018;15(1):11-22. doi:10.3892/ol.2017.7292.
    DOI  |   Google Scholar
  3. Knudsen ES, Witkiewicz AK. The Strange Case of CDK4/6 Inhibitors: Mechanisms, Resistance, and Combination Strategies. Trends Cancer. 2017;3(1):39-55. doi:10.1016/j.trecan.2016.11.006.
    DOI  |   Google Scholar
  4. Georgakilas AG, Martin OA, Bonner WM. p21: A Two-Faced Genome Guardian. Trends Mol Med. 2017;23(4):310-319. doi:10.1016/j.molmed.2017.02.001.
    DOI  |   Google Scholar
  5. Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe. 2014;15(3):266-282. doi:10.1016/j.chom.2014.02.011.
    DOI  |   Google Scholar
  6. Wei L, Griego AM, Chu M, Ozbun MA. Tobacco exposure results in increased E6 and E7 oncogene expression, DNA damage and mutation rates in cells maintaining episomal human papillomavirus 16 genomes. Carcinogenesis. 2014;35(10):2373-2381. doi:10.1093/carcin/bgu156.
    DOI  |   Google Scholar
  7. Tan H, Bao J, Zhou X. A novel missense-mutation-related feature extraction scheme for 'driver' mutation identification. Bioinformatics. 2012;28(22):2948-2955. doi:10.1093/bioinformatics/bts558.
    DOI  |   Google Scholar
  8. Chu D and Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer. 2019;19(1):359. doi: 10.1186/s12885-019-5572-x.
    DOI  |   Google Scholar
  9. Benisty H, Weber M, Hernandez-Alias X, Schaefer MH, Serrano L. Mutation bias within oncogene families is related to proliferation-specific codon usage. Proc Natl Acad Sci U S A. 2020;117(48):30848-30856. doi:10.1073/pnas.2016119117.
    DOI  |   Google Scholar
  10. Leemann-Zakaryan RP, Pahlich S, Grossenbacher D, Gehring H. Tyrosine Phosphorylation in the C-Terminal Nuclear Localization and Retention Signal (C-NLS) of the EWS Protein. Sarcoma. 2011;2011:218483. doi:10.1155/2011/218483.
    DOI  |   Google Scholar
  11. Mavinakere MS, Powers JM, Subramanian KS, Roggero VR, Allison LA. Multiple novel signals mediate thyroid hormone receptor nuclear import and export. J Biol Chem. 2012;287(37):31280-31297. doi:10.1074/jbc.M112.397745.
    DOI  |   Google Scholar
  12. Gao R, Wong SM. Basic amino acid mutations in the nuclear localization signal of hibiscus chlorotic ringspot virus p23 inhibit virus long distance movement. PLoS One. 2013;8(9):e74000. Published 2013 Sep 3. doi:10.1371/journal.pone.0074000.
    DOI  |   Google Scholar
  13. Kishore V, Patil AG. Expression of p16INK4A Protein in Cervical Intraepithelial Neoplasia and Invasive Carcinoma of Uterine Cervix. J Clin Diagn Res. 2017;11(9):EC17-EC20. doi:10.7860/JCDR/2017/29394.10644.
    DOI  |   Google Scholar
  14. Jackson R, Togtema M, Lambert PF, Zehbe I. Tumourigenesis driven by the human papillomavirus type 16 Asian-American e6 variant in a three-dimensional keratinocyte model. PLoS One. 2014;9(7):e101540. Published 2014 Jul 1. doi:10.1371/journal.pone.0101540.
    DOI  |   Google Scholar
  15. Moody CA, Laimins LA. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog. 2009;5(10):e1000605. doi:10.1371/journal.ppat.1000605.
    DOI  |   Google Scholar
  16. Fradet-Turcotte A, Bergeron-Labrecque F, Moody CA, Lehoux M, Laimins LA, Archambault J. Nuclear accumulation of the papillomavirus E1 helicase blocks S-phase progression and triggers an ATM-dependent DNA damage response. J Virol. 2011;85(17):8996-9012. doi:10.1128/JVI.00542-11.
    DOI  |   Google Scholar
  17. Dehlendorff C, Baandrup L, Kjaer SK. Real-World Effectiveness of Human Papillomavirus Vaccination Against Vulvovaginal High-Grade Precancerous Lesions and Cancers. J Natl Cancer Inst. 2021;113(7):869-874. doi:10.1093/jnci/djaa209.
    DOI  |   Google Scholar
  18. Cornet I, Gheit T, Franceschi S, Vignat J, Burk RD, Sylla BS, et al. Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR. J Virol. 2012;86(12):6855-6861. doi:10.1128/JVI.00483-12.
    DOI  |   Google Scholar
  19. Araujo-Arcos LE, Montaño S, Bello-Rios C, Garibay-Cerdenares OL, Leyva-Vázquez MA, Illades-Aguiar B. Molecular insights into the interaction of HPV-16 E6 variants against MAGI-1 PDZ1 domain. Sci Rep. 2022;12(1):1898. Published 2022 Feb 3. doi:10.1038/s41598-022-05995-1.
    DOI  |   Google Scholar
  20. Nogueira MO, Hošek T, Calçada EO, Castiglia F, Massimi P, Banks L, et al. Monitoring HPV-16 E7 phosphorylation events. Virology. 2017;503:70-75. doi:10.1016/j.virol.2016.12.030.
    DOI  |   Google Scholar
  21. Gheit T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front Oncol. 2019;9:355. Published 2019 May 8. doi:10.3389/fonc.2019.00355
    DOI  |   Google Scholar
  22. Chen Z, Li Q, Huang J, Li J, Yang F, Min X, et al. E6 and E7 gene polymorphisms in human papillomavirus Type-6 identified in Southwest China. Virol J. 2019;16(1):114. Published 2019 Sep 12. doi:10.1186/s12985-019-1221-x.
    DOI  |   Google Scholar
  23. Lou H, Boland JF, Burk R, Yeager M, Wentzensen N, Schiffman M, Mirabello L, Dean M. HPV16 E7 Nucleotide Variants Found in Cancer-Free Subjects Affect E7 Protein Expression and Transformation. Eur PMC. 2021;1(1). doi: 10.20944/preprints202111.0134.v1.
    DOI  |   Google Scholar
  24. He J, Li T, Wang Y, Song Z, Li Q, Liu Y, et al. Genetic variability of human papillomavirus type 39 based on E6, E7 and L1 genes in Southwest China. Virol J. 2021;18(1):72. Published 2021 Apr 8. doi:10.1186/s12985-021-01528-w
    DOI  |   Google Scholar
  25. Jones DL, Alani RM, Münger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 1997;11(16):2101-2111. doi:10.1101/gad.11.16.2101.
    DOI  |   Google Scholar
  26. Prati B, Marangoni B, Boccardo E. Human papillomavirus and genome instability: from productive infection to cancer. Clinics (Sao Paulo). 2018;73(suppl 1):e539s. Published 2018 Sep 6. doi:10.6061/clinics/2018/e539s.
    DOI  |   Google Scholar
  27. Kashyap N, Krishnan N, Kaur S, Ghai S. Risk Factors of Cervical Cancer: A Case-Control Study. Asia Pac J Oncol Nurs. 2019;6(3):308-314. doi:10.4103/apjon.apjon_73_18.
    DOI  |   Google Scholar


Most read articles by the same author(s)

<< < 1 2 3