Sanglah General Hospital, Indonesia
* Corresponding author

Article Main Content

Preeclampsia (PE) is the leading causes of maternal death worldwide as well as a significant cause of fetal morbidity and mortality, including fetal growth restriction (FGR). The concept that PE and FGR shared a common etiology is widely accepted, i.e., the maladaptive response to the impaired placentation. Normal placentation is the result of dynamic integration of cell proliferation, differentiation, and migration, in which trophoblast cells play a crucial role. Impaired trophoblast invasion into the maternal decidua leads to a decrease in uteroplacental blood flow and changes in intervillous hemodynamic. The dynamic interaction of these process with maladaptive decidual immune response, impaired cytokines and angiogenic factors regulation, and oxidative stress will lead into the clinical manifestation of PE and/or FGR.

References

  1. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013; 170(1): 1-7.
    DOI  |   Google Scholar
  2. Bujold E, Roberge S, Lacasse Y, Bureau M, Audibert F, Marcoux S, et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol. 2010; 116(2 Pt 1): 402-414.
    DOI  |   Google Scholar
  3. Spinillo A, Gardella B, Adamo L, Muscettola G, Fiandrino G, Cesari S. Pathologic placental lesions in early and late fetal growth restriction. Acta Obstet Gynecol Scand. 2019; 98(12): 1585-1594.
    DOI  |   Google Scholar
  4. Egbor M, Ansari T, Morris N, Green CJ, Sibbons PD. Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. BJOG. 2006; 113(5): 580-589.
    DOI  |   Google Scholar
  5. Mayhew TM, Manwani R, Ohadike C, Wijesekara J, Baker PN. The placenta in pre-eclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances. Placenta. 2007; 28(2-3): 233-238.
    DOI  |   Google Scholar
  6. Staun-Ram E, Shalev E. Human trophoblast function during the implantation process. Reprod Biol Endocrinol. 2005; 3: 56.
    DOI  |   Google Scholar
  7. Veerbeek JH, Nikkels PG, Torrance HL, Gravestejin J, Uiterweer EP, Derks JB, et al. Placental pathology in early intrauterine growth restriction associated with maternal hypertension. Placenta. 2014; 35(9): 696-701.
    DOI  |   Google Scholar
  8. Furuya M, Kurasawa K, Nagahama K, Kawachi K, Nozawa A, Takahashi T, et al. Disrupted balance of angiogenic and antiangiogenic signalings in PE. J Pregnancy. 2011; 2011: 123717.
    DOI  |   Google Scholar
  9. Varberg KM, Soares MJ. Paradigms for investigating invasive trophoblast cell development and contributions to uterine spiral artery remodeling. Placenta. 2021; 113: 48-56.
    DOI  |   Google Scholar
  10. James JL, Boss AL, Sun C, Allerkamp HH, Clark AR. From stem cells to spiral arteries: A journey through early placental development. Placenta. 2022; 125: 68-77.
    DOI  |   Google Scholar
  11. James JL, Saghian R, Perwick R, Clark AR. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling. Hum Reprod. 2018; 33(8): 1430-1441.
    DOI  |   Google Scholar
  12. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011; 123(24): 2856-2869.
    DOI  |   Google Scholar
  13. Rana S, Burke SD, Karumanchi SA. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am J Obstet Gynecol. 2022; 226(2S): S1019-S1034.
    DOI  |   Google Scholar
  14. Ravikumar G, Mukhopadhyay A, Mani C, Kocchar P, Crasta J, Thomas T, et al. Placental expression of angiogenesis-related genes and their receptors in IUGR pregnancies: correlation with fetoplacental and maternal parameters. J Matern Fetal Neonatal Med. 2019: 1-8.
    DOI  |   Google Scholar
  15. Fisher SJ. Why is placentation abnormal in PE? Am J Obstet Gynecol. 2015; 213(4 Suppl): S115-22.
    DOI  |   Google Scholar
  16. Xu X, Zhou Y, Wei H. Roles of HLA-G in the Maternal-Fetal Immune Microenvironment. Front Immunol. 2020; 11: 592010.
    DOI  |   Google Scholar
  17. Rapacz-Leonard A, Dąbrowska M, Janowski T. Major histocompatibility complex I mediates immunological tolerance of the trophoblast during pregnancy and may mediate rejection during parturition. Mediators Inflamm. 2014; 2014: 579279.
    DOI  |   Google Scholar
  18. Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol. 2018; 9: 2597.
    DOI  |   Google Scholar
  19. Nilsson LL, Hviid TVF. HLA Class Ib-receptor interactions during embryo implantation and early pregnancy. Hum Reprod Update. 2022.
    DOI  |   Google Scholar
  20. Tantengco OAG, Richardson L, Lee A, Kammala A, de Castro Silva M, Shahin H, et al. Histocompatibility Antigen, Class I, G (HLA-G)'s Role during Pregnancy and Parturition: A Systematic Review of the Literature. Life (Basel). 2021; 11(10)
    DOI  |   Google Scholar
  21. Pan Y, Yang L, Chen D, Hou H, Zhang M, Chen M, et al. Decidual macrophage derived MMP3 contributes to extracellular matrix breakdown in spiral artery remodeling in early human pregnancy. J Reprod Immunol. 2022; 150: 103494.
    DOI  |   Google Scholar
  22. Liu Y, Gao S, Zhao Y, Wang H, Pan Q, Shao Q. Decidual Natural Killer Cells: A Good Nanny at the Maternal-Fetal Interface During Early Pregnancy. Front Immunol. 2021; 12: 663660.
    DOI  |   Google Scholar
  23. Díaz-Hernández I, Alecsandru D, García-Velasco JA, Dominguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update. 2021; 27(4): 720-46.
    DOI  |   Google Scholar
  24. Yang X, Yang Y, Yuan Y, Liu L, Meng T. The Roles of Uterine Natural Killer (NK) Cells and KIR/HLA-C Combination in the Development of PE: A Systematic Review. Biomed Res Int. 2020; 2020: 4808072.
    DOI  |   Google Scholar
  25. Santos ED, Moindjie H, Sérazin V, Arnould L, Rodrigues Y, Fathallah K, et al. Preimplantation factor modulates trophoblastic invasion throughout the decidualization of human endometrial stromal cells. Reprod Biol Endocrinol 2021; 9(1): 96.
    DOI  |   Google Scholar
  26. Hakam MS, Miranda-Sayago JM, Hayrabedyan S, Todorova K, Spencer PS, Jabeen A, et al. Preimplantation Factor (PIF) Promotes HLA-G, -E, -F, -C Expression in JEG-3 Choriocarcinoma Cells and Endogenous Progesterone Activity. Cell Physiol Biochem. 2017; 43(6): 2277-96.
    DOI  |   Google Scholar
  27. Moindjie H, Santos ED, Loeuillet L, Gronier H, de Mazancourt P, Barnea ER, et al. Preimplantation factor (PIF) promotes human trophoblast invasion. Biol Reprod. 2014; 91(5): 118.
    DOI  |   Google Scholar
  28. Barnea ER, Vialard F, Moindjie H, Ornaghi S, Dieudonne MN, Paidas MJ. PreImplantation Factor (PIF*) endogenously prevents PE: Promotes trophoblast invasion and reduces oxidative stress. J Reprod Immunol. 2016; 114: 58-64.
    DOI  |   Google Scholar
  29. Lv J, Shan X, Yang H, Wen Y, Zhang X, Chen H, et al. Single Cell Proteomics Profiling Reveals That Embryo-Secreted TNF-α Plays a Critical Role During Embryo Implantation to the Endometrium. Reprod Sci. 2022.
    DOI  |   Google Scholar
  30. Kim SM, Kim JS. A Review of Mechanisms of Implantation. Dev Reprod. 2017; 21(4): 351-59.
    DOI  |   Google Scholar
  31. Wang WJ, Zhang H, Chen ZQ, Zhang W, Liu X-M, Fang J-Y, et al. Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis. Reprod Biol Endocrinol. 2019; 17(1): 2.
    DOI  |   Google Scholar
  32. Göhner C, Plösch T, Faas MM. Immune-modulatory effects of syncytiotrophoblast extracellular vesicles in pregnancy and PE. Placenta. 2017; 60 Suppl 1: S41-s51.
    DOI  |   Google Scholar
  33. Granne I, Shen M, Rodriguez-Caro H, Chadha G, O’Donnell E, Brosens JJ, et al. Characterisation of peri-implantation endometrial Treg and identification of an altered phenotype in recurrent pregnancy loss. Mucosal Immunol. 2022; 15(1): 120-29.
    DOI  |   Google Scholar
  34. Jafri S, Ormiston ML. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and PE: shared disease mechanisms and translational opportunities. Am J Physiol Regul Integr Comp Physiol. 2017; 313(6): R693-r705.
    DOI  |   Google Scholar
  35. Steinborn A, Schmitt E, Kisielewicz A, Rechenberg S, Seissler N, Mahnke K, et al. Pregnancy-associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin Exp Immunol. 2012; 167(1): 84-98.
    DOI  |   Google Scholar
  36. Sun Y, Wu S, Zhou Q, Li X. Trophoblast-derived interleukin 9 mediates immune cell conversion and contributes to maternal-fetal tolerance. J Reprod Immunol. 2021; 148: 103379.
    DOI  |   Google Scholar
  37. Redman CWG, Staff AC, Roberts JM. Syncytiotrophoblast stress in PE: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022; 226(2s): S907-s27.
    DOI  |   Google Scholar
  38. Jung E, Romero R, Yeo L, Gomez-Lopez N, Chaemsaithong P, Jaovisidha A, et al. The etiology of PE. Am J Obstet Gynecol. 2022; 226(2s): S844-s66.
    DOI  |   Google Scholar
  39. Gyselaers W. Hemodynamic pathways of gestational hypertension and PE. Am J Obstet Gynecol. 2022; 226(2s): S988-s1005.
    DOI  |   Google Scholar
  40. Margioula-Siarkou G, Margioula-Siarkou C, Petousis S, Margaritis K, Vavoulidis E, Gullo G, et al. The role of endoglin and its soluble form in pathogenesis of PE. Mol Cell Biochem. 2022; 477(2): 479-91.
    DOI  |   Google Scholar
  41. Redman CW, Staff AC. PE, biomarkers, syncytiotrophoblast stress, and placental capacity. Am J Obstet Gynecol. 2015; 213(4 Suppl): S9.e1, S9-11.
    DOI  |   Google Scholar
  42. Kingdom JC, Audette MC, Hobson SR, Windrim RC, Morgen E. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol. 2018; 218(2s): S803-s17.
    DOI  |   Google Scholar
  43. Aviram R, Kidron D. Placental aetiologies of foetal growth restriction: clinical and pathological differences. Early Hum Dev. 2010; 86(1): 59-63.
    DOI  |   Google Scholar
  44. Novac MV, Niculescu M, Manolea MM, Dijamarescu AL, Illiescu DG, Novac MB, et al. Placental findings in pregnancies complicated with IUGR-histopathological and immunohistochemical analysis. Rom J Morphol Embryol. 2018; 59(3): 715-20.
     Google Scholar