Molecular Development of Placenta and Its Relationship with Preeclampsia and Fetal Growth Restriction
Article Main Content
Preeclampsia (PE) is the leading causes of maternal death worldwide as well as a significant cause of fetal morbidity and mortality, including fetal growth restriction (FGR). The concept that PE and FGR shared a common etiology is widely accepted, i.e., the maladaptive response to the impaired placentation. Normal placentation is the result of dynamic integration of cell proliferation, differentiation, and migration, in which trophoblast cells play a crucial role. Impaired trophoblast invasion into the maternal decidua leads to a decrease in uteroplacental blood flow and changes in intervillous hemodynamic. The dynamic interaction of these process with maladaptive decidual immune response, impaired cytokines and angiogenic factors regulation, and oxidative stress will lead into the clinical manifestation of PE and/or FGR.
References
-
Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013; 170(1): 1-7.
DOI |
Google Scholar
1
-
Bujold E, Roberge S, Lacasse Y, Bureau M, Audibert F, Marcoux S, et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol. 2010; 116(2 Pt 1): 402-414.
DOI |
Google Scholar
2
-
Spinillo A, Gardella B, Adamo L, Muscettola G, Fiandrino G, Cesari S. Pathologic placental lesions in early and late fetal growth restriction. Acta Obstet Gynecol Scand. 2019; 98(12): 1585-1594.
DOI |
Google Scholar
3
-
Egbor M, Ansari T, Morris N, Green CJ, Sibbons PD. Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. BJOG. 2006; 113(5): 580-589.
DOI |
Google Scholar
4
-
Mayhew TM, Manwani R, Ohadike C, Wijesekara J, Baker PN. The placenta in pre-eclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances. Placenta. 2007; 28(2-3): 233-238.
DOI |
Google Scholar
5
-
Staun-Ram E, Shalev E. Human trophoblast function during the implantation process. Reprod Biol Endocrinol. 2005; 3: 56.
DOI |
Google Scholar
6
-
Veerbeek JH, Nikkels PG, Torrance HL, Gravestejin J, Uiterweer EP, Derks JB, et al. Placental pathology in early intrauterine growth restriction associated with maternal hypertension. Placenta. 2014; 35(9): 696-701.
DOI |
Google Scholar
7
-
Furuya M, Kurasawa K, Nagahama K, Kawachi K, Nozawa A, Takahashi T, et al. Disrupted balance of angiogenic and antiangiogenic signalings in PE. J Pregnancy. 2011; 2011: 123717.
DOI |
Google Scholar
8
-
Varberg KM, Soares MJ. Paradigms for investigating invasive trophoblast cell development and contributions to uterine spiral artery remodeling. Placenta. 2021; 113: 48-56.
DOI |
Google Scholar
9
-
James JL, Boss AL, Sun C, Allerkamp HH, Clark AR. From stem cells to spiral arteries: A journey through early placental development. Placenta. 2022; 125: 68-77.
DOI |
Google Scholar
10
-
James JL, Saghian R, Perwick R, Clark AR. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling. Hum Reprod. 2018; 33(8): 1430-1441.
DOI |
Google Scholar
11
-
Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011; 123(24): 2856-2869.
DOI |
Google Scholar
12
-
Rana S, Burke SD, Karumanchi SA. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am J Obstet Gynecol. 2022; 226(2S): S1019-S1034.
DOI |
Google Scholar
13
-
Ravikumar G, Mukhopadhyay A, Mani C, Kocchar P, Crasta J, Thomas T, et al. Placental expression of angiogenesis-related genes and their receptors in IUGR pregnancies: correlation with fetoplacental and maternal parameters. J Matern Fetal Neonatal Med. 2019: 1-8.
DOI |
Google Scholar
14
-
Fisher SJ. Why is placentation abnormal in PE? Am J Obstet Gynecol. 2015; 213(4 Suppl): S115-22.
DOI |
Google Scholar
15
-
Xu X, Zhou Y, Wei H. Roles of HLA-G in the Maternal-Fetal Immune Microenvironment. Front Immunol. 2020; 11: 592010.
DOI |
Google Scholar
16
-
Rapacz-Leonard A, Dąbrowska M, Janowski T. Major histocompatibility complex I mediates immunological tolerance of the trophoblast during pregnancy and may mediate rejection during parturition. Mediators Inflamm. 2014; 2014: 579279.
DOI |
Google Scholar
17
-
Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol. 2018; 9: 2597.
DOI |
Google Scholar
18
-
Nilsson LL, Hviid TVF. HLA Class Ib-receptor interactions during embryo implantation and early pregnancy. Hum Reprod Update. 2022.
DOI |
Google Scholar
19
-
Tantengco OAG, Richardson L, Lee A, Kammala A, de Castro Silva M, Shahin H, et al. Histocompatibility Antigen, Class I, G (HLA-G)'s Role during Pregnancy and Parturition: A Systematic Review of the Literature. Life (Basel). 2021; 11(10)
DOI |
Google Scholar
20
-
Pan Y, Yang L, Chen D, Hou H, Zhang M, Chen M, et al. Decidual macrophage derived MMP3 contributes to extracellular matrix breakdown in spiral artery remodeling in early human pregnancy. J Reprod Immunol. 2022; 150: 103494.
DOI |
Google Scholar
21
-
Liu Y, Gao S, Zhao Y, Wang H, Pan Q, Shao Q. Decidual Natural Killer Cells: A Good Nanny at the Maternal-Fetal Interface During Early Pregnancy. Front Immunol. 2021; 12: 663660.
DOI |
Google Scholar
22
-
Díaz-Hernández I, Alecsandru D, García-Velasco JA, Dominguez F. Uterine natural killer cells: from foe to friend in reproduction. Hum Reprod Update. 2021; 27(4): 720-46.
DOI |
Google Scholar
23
-
Yang X, Yang Y, Yuan Y, Liu L, Meng T. The Roles of Uterine Natural Killer (NK) Cells and KIR/HLA-C Combination in the Development of PE: A Systematic Review. Biomed Res Int. 2020; 2020: 4808072.
DOI |
Google Scholar
24
-
Santos ED, Moindjie H, Sérazin V, Arnould L, Rodrigues Y, Fathallah K, et al. Preimplantation factor modulates trophoblastic invasion throughout the decidualization of human endometrial stromal cells. Reprod Biol Endocrinol 2021; 9(1): 96.
DOI |
Google Scholar
25
-
Hakam MS, Miranda-Sayago JM, Hayrabedyan S, Todorova K, Spencer PS, Jabeen A, et al. Preimplantation Factor (PIF) Promotes HLA-G, -E, -F, -C Expression in JEG-3 Choriocarcinoma Cells and Endogenous Progesterone Activity. Cell Physiol Biochem. 2017; 43(6): 2277-96.
DOI |
Google Scholar
26
-
Moindjie H, Santos ED, Loeuillet L, Gronier H, de Mazancourt P, Barnea ER, et al. Preimplantation factor (PIF) promotes human trophoblast invasion. Biol Reprod. 2014; 91(5): 118.
DOI |
Google Scholar
27
-
Barnea ER, Vialard F, Moindjie H, Ornaghi S, Dieudonne MN, Paidas MJ. PreImplantation Factor (PIF*) endogenously prevents PE: Promotes trophoblast invasion and reduces oxidative stress. J Reprod Immunol. 2016; 114: 58-64.
DOI |
Google Scholar
28
-
Lv J, Shan X, Yang H, Wen Y, Zhang X, Chen H, et al. Single Cell Proteomics Profiling Reveals That Embryo-Secreted TNF-α Plays a Critical Role During Embryo Implantation to the Endometrium. Reprod Sci. 2022.
DOI |
Google Scholar
29
-
Kim SM, Kim JS. A Review of Mechanisms of Implantation. Dev Reprod. 2017; 21(4): 351-59.
DOI |
Google Scholar
30
-
Wang WJ, Zhang H, Chen ZQ, Zhang W, Liu X-M, Fang J-Y, et al. Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis. Reprod Biol Endocrinol. 2019; 17(1): 2.
DOI |
Google Scholar
31
-
Göhner C, Plösch T, Faas MM. Immune-modulatory effects of syncytiotrophoblast extracellular vesicles in pregnancy and PE. Placenta. 2017; 60 Suppl 1: S41-s51.
DOI |
Google Scholar
32
-
Granne I, Shen M, Rodriguez-Caro H, Chadha G, O’Donnell E, Brosens JJ, et al. Characterisation of peri-implantation endometrial Treg and identification of an altered phenotype in recurrent pregnancy loss. Mucosal Immunol. 2022; 15(1): 120-29.
DOI |
Google Scholar
33
-
Jafri S, Ormiston ML. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and PE: shared disease mechanisms and translational opportunities. Am J Physiol Regul Integr Comp Physiol. 2017; 313(6): R693-r705.
DOI |
Google Scholar
34
-
Steinborn A, Schmitt E, Kisielewicz A, Rechenberg S, Seissler N, Mahnke K, et al. Pregnancy-associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin Exp Immunol. 2012; 167(1): 84-98.
DOI |
Google Scholar
35
-
Sun Y, Wu S, Zhou Q, Li X. Trophoblast-derived interleukin 9 mediates immune cell conversion and contributes to maternal-fetal tolerance. J Reprod Immunol. 2021; 148: 103379.
DOI |
Google Scholar
36
-
Redman CWG, Staff AC, Roberts JM. Syncytiotrophoblast stress in PE: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022; 226(2s): S907-s27.
DOI |
Google Scholar
37
-
Jung E, Romero R, Yeo L, Gomez-Lopez N, Chaemsaithong P, Jaovisidha A, et al. The etiology of PE. Am J Obstet Gynecol. 2022; 226(2s): S844-s66.
DOI |
Google Scholar
38
-
Gyselaers W. Hemodynamic pathways of gestational hypertension and PE. Am J Obstet Gynecol. 2022; 226(2s): S988-s1005.
DOI |
Google Scholar
39
-
Margioula-Siarkou G, Margioula-Siarkou C, Petousis S, Margaritis K, Vavoulidis E, Gullo G, et al. The role of endoglin and its soluble form in pathogenesis of PE. Mol Cell Biochem. 2022; 477(2): 479-91.
DOI |
Google Scholar
40
-
Redman CW, Staff AC. PE, biomarkers, syncytiotrophoblast stress, and placental capacity. Am J Obstet Gynecol. 2015; 213(4 Suppl): S9.e1, S9-11.
DOI |
Google Scholar
41
-
Kingdom JC, Audette MC, Hobson SR, Windrim RC, Morgen E. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol. 2018; 218(2s): S803-s17.
DOI |
Google Scholar
42
-
Aviram R, Kidron D. Placental aetiologies of foetal growth restriction: clinical and pathological differences. Early Hum Dev. 2010; 86(1): 59-63.
DOI |
Google Scholar
43
-
Novac MV, Niculescu M, Manolea MM, Dijamarescu AL, Illiescu DG, Novac MB, et al. Placental findings in pregnancies complicated with IUGR-histopathological and immunohistochemical analysis. Rom J Morphol Embryol. 2018; 59(3): 715-20.
Google Scholar
44
Most read articles by the same author(s)
-
Glenn Kristie Wanaditya,
I Wayan Artana Putra,
Made Bagus Dwi Aryana,
Ryan Saktika Mulyana,
Obesity in Pregnant Women and Its Impact on Maternal and Neonatal Morbidity , European Journal of Medical and Health Sciences: Vol. 5 No. 3 (2023) -
I Wayan Artana Putra,
Evert Solomon Pangkahila,
I Nyoman Bayu Mahendra,
Kadek Fajar Marta,
I Made Darmayasa,
Putu Ngurah Aeland Prilaksana Kalimantara,
Differences in Plasma Endothelin-1 Levels Before and After MgSO4 Administration in Pregnant Women with Preeclampsia , European Journal of Medical and Health Sciences: Vol. 7 No. 1 (2025) -
I Wayan Artana Putra,
I Wayan Megadhana,
Kade Yudi Saspriyana,
Belinda Carlisa,
Characteristics of Pregnant Patients with Preeclampsia at Ngoerah Hospital Denpasar in the Period of January–December 2023 , European Journal of Medical and Health Sciences: Vol. 7 No. 2 (2025) -
I Gede Kadek Candra Mahardika,
I Nyoman Hariyasa Sanjaya,
Ryan Saktika Mulyana,
Putu Doster Mahayasa,
I Wayan Artana Putra,
I Gde Sastra Winata,
The Effect of Intraperitoneal Ozone Therapy onthe Number and Diameter of Placental Terminalis Villi in Wistar Rats Induced Preeclampsia Model with Deoxycorticosterone Acetate (DOCA) , European Journal of Medical and Health Sciences: Vol. 7 No. 5 (2025)