University of Eastern Finland, Finland
Ondokuz Mayis University, Turkey
University of Hail, Saudi Arabia
Ondokuz Mayis University, Turkey
* Corresponding author

Article Main Content

Renal failure and kidney disease are major concerns worldwide and are commonly coupled to diseases like hypertension, diabetes, obesity, and hypercholesterolemia. We undertook this study to explore the scope of genetic spectrum underlying the physiopathology of end-stage renal disease (ESRD) using whole exome sequencing (WES) on genomic DNA (gDNA) from 12 unrelated patients in younger ages. We have performed WES on 12 patients in stage of ESRD and analyze the FASTQ data through GATK pipeline. Here, we report for the first time a novel approach of establishing the severity and the magnitude of a disease on different chromosomes and associated karyotypes using chromosome Heatmap. The chromosome Heat will provide us with a road map to narrow down mutations selection leading us to SNPs characterization. Our preliminary results presented in the form of chromosomes HeatMap prelude our ongoing works which consist in identifying and characterizing new genes involved in the problem of renal diseases, results that depict the magnitude of the uncovered genes mutations and their biological implications related to the genome of these patients.

References

  1. Duni A, Liakopoulos V, Rapsomanikis KL, Dounousi E. Chronic Kidney Disease and Disproportionally Increased Cardiovascular Damage: Does Oxidative Stress Explain the Burden? Oxid Med Cell Longev. Oxid Med Cell Longev. 9036450, http//doi:org 10.1155/2017/9036450 (2017).
    DOI  |   Google Scholar
  2. Köttgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M et al. multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet.41 (6): 712–717, http//:doi:10.1038/ng.377. (2009).
    DOI  |   Google Scholar
  3. Kottgen A, Pattaro C, Carsten A, Böger CA, Fuchsberger C, Olden M et al. New loci associated with kidney function and chronic kidney disease Nat genet 42: (5): 376-384, http//: doi:10.1038/ng.568. (2010).
    DOI  |   Google Scholar
  4. Chambers C Zhang W, Lord GM, Van der Harst P, Lawlor DA, Sehmi JS et al. Genetic loci influencing kidney function and chronic kidney disease in man. Nat Genet, http//:doi:10.1038/ng.566. (2010).
    DOI  |   Google Scholar
  5. Foley RN, Collins AJ. J Am Soc Nephrol 18: 2644 –2648, 2007, http//: doi: 10.1681/ASN.2007020220 (2007).
    DOI  |   Google Scholar
  6. Grassmann A, Gioberge S, Moeller S, Brown G. ESRD Patients in 2004: Global Overview of Patient Numbers, Treatment Modalities and Associated Trends. Nephrol Dial Transplant. Feb;22(2):663-5, http//: doi: 10.1093/ndt/gfl596. (2007).
    DOI  |   Google Scholar
  7. Modi, GK, Jha, V. The incidence of end-stage renal disease in India A population-based study. Kidney International, (70), 2131–2133. http://www.kidney-international.org/ doi:10.1038/sj.ki.5001958. (2006).
    DOI  |   Google Scholar
  8. Fletcher J, McDonald S, Alexander SI. Australian, New Zealand Pediatric Nephrology A. Prevalence of genetic renal disease in children. Pediatr Nephrol. 28(2):251–256. http//: doi: 10.1007/s00467-012-2306-6. (2013).
    DOI  |   Google Scholar
  9. Mallett A, Patel C, Salisbury A, Wang Z, Healy H, Hoy W. The prevalence and epidemiology of genetic renal disease amongst adults with chronic kidney disease in Australia Orphanet Journal of Rare Diseases 9:98 http://www.ojrd.com/content/9/1/98, http//:doi: 10.1186/1750-1172-9-98 (2014).
    DOI  |   Google Scholar
  10. Levy, Micheline, and Josué Feingold. Estimating prevalence in single-gene kidney diseases progressing to renal failure. Kidney International 58 ;( 3): 925-943. https://doi.org/10.1046/j.1523-1755.2000.00250. (2000).
    DOI  |   Google Scholar
  11. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S. SRNS Study Group A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2015; 26:1279–89. http//:doi.org/10.1681/ASN.2014050489. (2015).
    DOI  |   Google Scholar
  12. Lovric S, Fang H, Vega-Warner V, Sadowski CE, Yung Gee HY Halbritter J et al. Nephrotic Syndrome Study Group. Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol; 9:1109–16. http: doi.org/ 10.2215/CJN.09010813. (2014).
    DOI  |   Google Scholar
  13. Hwang, DY, Dworschak, GC, Kohl, S, Saisawat, P, Vivante A, Hilger, AC, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney International, 85, 1429–1433, http//:doi.org/10.1038/ki.2013.508. (2014).
    DOI  |   Google Scholar
  14. Zhang Y, Zhang T, Lu Z. Gap Filling for a Human MHC Haplotype Sequence American Journal of Life Sciences, 4, No. 6, pp. 146-151, http: doi.org/ 10.11648/j.ajls.20160406.12 (2016).
    DOI  |   Google Scholar
  15. Sarnataro S, Chiariello AM, Esposito A, Prisco A, Nicodemi M Structure of the human chromosome interaction network, PLoS ONE 12(11): e0188201, http: doi.org/ 10.1371/.0188201. (2017).
    DOI  |   Google Scholar
  16. Alaraj, MI, Alaraj, N, Hussein, TD. Early Detection of Renal Impairment by Biomarkers Serum Cystatin C and Creatinine in Saudi Arabia, Journal of Research in Medical and Dental Science 5(1):37/ http//:doi.org/ 10.5455/jrmds.2017518. (2017).
    DOI  |   Google Scholar
  17. Nuglozeh, E, Fazaludeen, FM, Mbikay, M, Hussain, AG, Al-Hazimi, A, Ashankyty I. Whole-Exome Sequencing Reveals an M268T Mutation in the Angiotensinogen Gene of Four Unrelated Renal Failure Patients from the Hail Region of Saudi Arabia. International Journal of Medical Research & Health Sciences, 6(6): 144-149/ www.ijmrhs.com. (2017).
     Google Scholar
  18. Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A et al. Heatmapper: web-enabled heat mapping for all Nucleic Acids Research. Vol. 44: W147–W153, http.org/10.1093/nar/gkw419. (2016).
    DOI  |   Google Scholar
  19. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetics parameter estimation from sequencing data. Bioinformatics 27(21) 2987–2993, http.org/ doi: 10.1093/nar/gkw419.10.1093/bioinformatics/btr509. (2011).
    DOI  |   Google Scholar
  20. Chen N, Cai Y, Chen Q, Li R, Wang K, Huang Y et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 9: 2337, http.org/10.1038/s41467-018-04737-0 (2018).
    DOI  |   Google Scholar
  21. Dakal T C, Kala D, Dhiman G, V Yadav V, Krokhotin A. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene. Scientific RePorTS | 7: 6525. http.org/ doi: 10.1038/s41598-017-06575-4. (2017).
    DOI  |   Google Scholar
  22. Mansouri, M, Nounou, H, Nounou, M. Genetic Algorithm-based Adaptive Optimization for Target Tracking in Wireless Sensor Networks. J Sign Process Syst. 74:189–202. http.org/doi/10.1007/s11265-013-0758. (2014).
    DOI  |   Google Scholar
  23. Nuglozeh, E. Whole-Exomes Sequencing Delineates Gene Variants Profile in a Young Saudi Male with Familial Hypercholesterolemia: Case Report. J Clin Diagn Res. 2017 Jun; 11(6): GD01–GD06, http.org/doi/10.7860/JCDR/2017/28156.10143. (2017a).
    DOI  |   Google Scholar
  24. Nuglozeh, E. (2017b). Signature of Chromosomes Instability in Different Diseases as Accessed on Illumina Miseq Platform using Depth of Coverage Metrics for Variant Evaluation by GATK, International Journal of Science and Research, 6(2)/ www.IJSR.net ISSN (Online) 2319-7064/, http.org/ doi/ 10.21275/ART2017972. (2017b).
     Google Scholar
  25. Brownlee, M. (1992). Glycation products and the pathogenesis of diabetic complications Diabetes Care, 15, 1835–1843, http.org/doi/10.2337/diacare.15.12.1835 (1992).
    DOI  |   Google Scholar
  26. Brownlee, M. Advanced glycation end products in diabetic complications Curr. Opin Endocrinol. Diabetes, 3, 291–297, (1996).
    DOI  |   Google Scholar
  27. Cipollone F, Iezzi A, Fazia M, Zucchelli M, Pini B, Cuccurullo C et al. The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques role of glycemic control Circulation 108:1070–1077, http.org/doi/ 10.1161/01.CIR.0000086014.80477. (2003).
    DOI  |   Google Scholar
  28. Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M. et al., Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J. Am Soc. Nephrol. 11:1656, (2000).
    DOI  |   Google Scholar