Osaka University, Japan
University of Colombo, Sri Lanka
* Corresponding author

Article Main Content

Characterized by overproduction of differentiated cells of myeloid lineage, polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) are Philadelphia chromosome negative myeloproliferative neoplasms (MPNs). Found in 95% of PV patients and 50-60% of ET and PMF patients, the JAK2V617F mutation is the most common molecular abnormality shared by the three MPN phenotypes. Although the JAK2 mutation is recommended for diagnosis of MPNs by the World Health Organization (WHO), its presence alone is insufficient to discriminate among the 3 subtypes. This implication of single mutation (JAK2V617F) in all three MPN phenotypes has long been an objective under question and several studies investigating on the gene dosage hypothesis have discovered the promising role of the JAK2V617F allele burden in MPN phenotype. The significant differences of the JAK2V617F allele burden in PV, ET and PMF patients as well its associations with specific clinical and haematological characteristics bear high utility in diagnosis, prognosis, and therapeutic monitoring. Although great strides have been achieved with the use of qPCR and new molecular biology techniques in allele burden quantification, addressing the deficits in the current understandings and further improvement of technology will be highly beneficial. Therefore, we have reviewed PubMed database from 2005 to 2022.

Using keywords such as JAK2V617F mutation, Allele burden, Myeloproliferative neoplasms etc. and the present review discusses the significance of JAK2V617F allele burden in diagnosis and therapeutic monitoring of myeloproliferative neoplasms.

References

  1. Grabek J, Straube J, Bywater M, Lane SW. MPN: The Molecular drivers of disease initiation, progression and transformation and their effect on treatment. Cells. 2020; 9(8).
    DOI  |   Google Scholar
  2. Tefferi A. Myeloproliferative neoplasms: A decade of discoveries and treatment advances. Am J Hematol. 2016; 91(1): 50-8.
    DOI  |   Google Scholar
  3. Dameshek W. Some speculations on the myeloproliferative syndromes [editorial]. Blood. 1951; 6(4): 372-375.
    DOI  |   Google Scholar
  4. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127(20): 2391-405.
    DOI  |   Google Scholar
  5. Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018; 8(2): 15.
    DOI  |   Google Scholar
  6. Spivak JL. Myeloproliferative Neoplasms. N Engl J Med. 2017; 376(22): 2168-81.
    DOI  |   Google Scholar
  7. Godfrey AL. Myeloproliferative neoplasms (MPNs). Blood Rev. 2020,42.
    DOI  |   Google Scholar
  8. Chuzi S, Stein BL. Essential thrombocythemia: a review of the clinical features, diagnostic challenges, and treatment modalities in the era of molecular discovery. Leukemia and Lymphoma. 2017: 2786-98.
    DOI  |   Google Scholar
  9. Skoda RC, Duek A, Grisouard J. Pathogenesis of myeloproliferative neoplasms. Experimental Hematology. 2015: 599-608.
    DOI  |   Google Scholar
  10. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017; 129(6): 667-79.
    DOI  |   Google Scholar
  11. Viny AD, Levine RL. Genetics of myeloproliferative neoplasms. Cancer Journal. NIH Public Access; 2014: 61-5.
    DOI  |   Google Scholar
  12. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005; 365(9464): 1054-61.
    DOI  |   Google Scholar
  13. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005; 434(7037): 1144-8.
    DOI  |   Google Scholar
  14. Kralovics R, Passamonti F, Buser AS, Teo S-S, Tiedt R, Passweg JR, et al. A Gain-of-Function Mutation of JAK2 in Myeloproliferative Disorders. N Engl J Med. 2005; 352(17): 1779-90.
    DOI  |   Google Scholar
  15. Kilpivaara O, Levine RL. JAK2 and MPL mutations in myeloproliferative neoplasms: Discovery and science. Vol. 22, Leukemia. Nature Publishing Group; 2008: 1813-7.
    DOI  |   Google Scholar
  16. Grinfeld J, Nangalia J, Green AR. Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica. 2017; 102(1): 7-17.
    DOI  |   Google Scholar
  17. de Freitas RM, da Costa Maranduba CM. Myeloproliferative neoplasms and the JAK/STAT signaling pathway: An overview. Revista Brasileira de Hematologia e Hemoterapia. 2015: 348-53.
    DOI  |   Google Scholar
  18. Chen E, Mullally A. How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms? Hematology . 2014; 2014(1): 268-76.
    DOI  |   Google Scholar
  19. Vannucchi AM, Pieri L, Guglielmelli P. JAK2 allele burden in the myeloproliferative neoplasms: Effects on phenotype, prognosis and change with treatment. Ther Adv Hematol. 2011; 2(1): 21-32.
    DOI  |   Google Scholar
  20. Pardanani A, Fridley BL, Lasho TL, Gilliland DG, Tefferi A. Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood. 2008; 111(5): 2785-9.
    DOI  |   Google Scholar
  21. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006; 107(11): 4274-81.
    DOI  |   Google Scholar
  22. McPherson S, McMullin MF, Mills K. Epigenetics in Myeloproliferative Neoplasms. Journal of Cellular and Molecular Medicine. 2017; 21: 1660-7.
    DOI  |   Google Scholar
  23. Kralovics R. Genetic complexity of myeloproliferative neoplasms. Leukemia. 2008; 22: 1841-8.
    DOI  |   Google Scholar
  24. Popova-Labachevska M, Panovska-Stavridis I, Eftimov A, Kapedanovska NA, Cevreska L, Ivanovski M, et al. Evaluation of the JAK2V617F mutational burden in patients with philadelphia chromosome negative myeloproliferative neoplasms: A single-center experience. Balk J Med Genet. 2019; 22(2): 31-6.
    DOI  |   Google Scholar
  25. Chi HS, Park SH, Cho YU, Jang S, Park CJ. The allele burden of JAK2 V617F can aid in differential diagnosis of Philadelphia Chromosome-Negative Myeloproliferative Neoplasm. Blood Res. 2013; 48(2): 127-32.
    DOI  |   Google Scholar
  26. Zhao S, Zhang X, Xu Y, Feng Y, Sheng W, Cen J, et al. Impact of JAK2V617F mutation burden on disease phenotype in Chinese patients with JAK2V617F-positive polycythemia vera (PV) and essential thrombocythemia (ET). Int J Med Sci. 2016; 13(1): 85-91.
    DOI  |   Google Scholar
  27. Alshemmari SH, Rajaan R, Ameen R, Al-Drees MA, Almosailleakh MR. JAK2V617F allele burden in patients with myeloproliferative neoplasms. Ann Hematol. 2014; 93(5): 791-6.
    DOI  |   Google Scholar
  28. Rocca F La, Grieco V, Ruggieri V, Zifarone E, Villani O, Zoppoli P, et al. Superiority of droplet digital PCR over real-time quantitative PCR for JAK2 V617F allele mutational burden assessment in myeloproliferative neoplasms: A retrospective study. Diagnostics. 2020; 10(3).
    DOI  |   Google Scholar
  29. Marty C, Lacout C, Martin A, Hasan S, Jacquot S, Birling MC, et al. Myeloproliferative neoplasm induced by constitutive expression of JAK2 V617F in knock-in mice. Blood. 2010; 116(5): 783-7.
    DOI  |   Google Scholar
  30. Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J, et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008; 111(8): 3931-40.
    DOI  |   Google Scholar
  31. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006.
    DOI  |   Google Scholar
  32. Xing S, Ho WT, Zhao W, Ma J, Wang S, Xu E, et al. Transgenic expression of JAK2 V617F causes myeloproliferative disorders in mice. Blood. 2008; 111(10): 5109-17.
    DOI  |   Google Scholar
  33. Bagheropur S, Ehsanpour A, Birgani MT, Saki N. JAK2V617F allele burden: innovative concept in monitoring of myeloproliferative neoplasms. Memo - Mag Eur Med Oncol. 2018; 11(2): 152-7.
    DOI  |   Google Scholar
  34. Sazawal S, Singh K, Chhikara S, Chaubey R, Mahapatra M, Saxena R. Influence of JAK2V617F allele burden on clinical phenotype of polycythemia vera patients: A study from India. South Asian J Cancer. 2019; 8(2): 127-9.
    DOI  |   Google Scholar
  35. Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: The impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010; 24(9): 1574-9.
    DOI  |   Google Scholar
  36. Coucelo M, Caetano G, Sevivas T, Santos SA, Fidalgo T, Bento C, et al. JAK2V617F allele burden is associated with thrombotic mechanisms activation in polycythemia vera and essential thrombocythemia patients. Int J Hematol. 2014; 99(1): 32-4.
    DOI  |   Google Scholar
  37. Vannucchi AM. JAK2 Mutation and Thrombosis in the Myeloproliferative Neoplasms. 2010; 22-8.
    DOI  |   Google Scholar
  38. Bertozzi I, Bogoni G, Biagetti G, Duner E, Lombardi AM, Fabris F, et al. Thromboses and hemorrhages are common in MPN patients with high JAK2V617F allele burden. Ann Hematol. 2017; 96(8): 1297-302.
    DOI  |   Google Scholar
  39. Horvat I, Boban A, Zadro R, Antolic MR, Serventi-Seiwerth R, Roncevic P, et al. Influence of Blood Count, Cardiovascular Risks, Inherited Thrombophilia, and JAK2 V617F Burden Allele on Type of Thrombosis in Patients With Philadelphia Chromosome Negative Myeloproliferative Neoplasms. Clin Lymphoma, Myeloma Leuk. 2019; 19(1): 53-63.
    DOI  |   Google Scholar
  40. Antonioli E, Guglielmelli P, Poli G, Bogani C, Pancrazzi A, Longo G, et al. Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica. 2008; 93(1): 41-8.
    DOI  |   Google Scholar
  41. Larsen TS, Pallisgaard N, Møller MB, Hasselbalch HC. The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis-Impact on disease phenotype. Eur J Haematol. 2007; 79(6): 508-15.
    DOI  |   Google Scholar
  42. Carobbio A, Finazzi G, Antonioli E, Guglielmelli P, Vannucchi AM, Dellacasa CM, et al. JAK2V617F allele burden and thrombosis: A direct comparison in essential thrombocythemia and polycythemia vera. Exp Hematol. 2009; 37(9): 1016-21.
    DOI  |   Google Scholar
  43. Guglielmelli P, Barosi G, Specchia G, Rambaldi A, Lo Coco F, Antonioli E, et al. Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood. 2009; 114(8): 1477-83.
    DOI  |   Google Scholar
  44. Tefferi A, Lasho TL, Huang J, Finke C, Mesa RA, Li CY, et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia. 2008; 22(4): 756-61.
    DOI  |   Google Scholar
  45. Ferdowsi S, Ghaffari SH, Amirizadeh N, Azarkeivan A, Atarodi K, Faranoush M, et al. JAK2V617F allele burden measurement in peripheral blood of Iranian patients with myeloproliferative neoplasms and effect of hydroxyurea on JAK2V617F allele burden. Int J Hematol Stem Cell Res. 2016; 10(2): 70-8.
     Google Scholar
  46. Silver RT, Vandris K, Wang YL, Adriano F, Jones A V, Christos PJ, et al. JAK2V617F allele burden in polycythemia vera correlates with grade of myelofibrosis, but is not substantially affected by therapy. Leuk Res. 2011; 35(2): 177-82.
    DOI  |   Google Scholar
  47. Lange T, Edelmann A, Siebolts U, Krahl R, Nehring C, Jäkel N, et al. JAK2 p.V617F allele burden in myeloproliferative neoplasms one month after allogeneic stem cell transplantation significantly predicts outcome and risk of relapse. Haematologica. 2013; 98(5): 722-8.
    DOI  |   Google Scholar
  48. Jovanovic J V, Vannucchi AM, Lippert E, Leibundgut EO, Maroc N, Hermouet S, et al. Systematic Evaluation of DNA-Based Quantitative-Polymerase Chain Reaction (Q-PCR) Assays to Track Treatment Response in Patients with JAK2-V617F Associated Myeloproliferative Neoplasms: A Joint European LeukemiaNet/ MPN&MPNr-EuroNet Study. Blood. 2011; 118(21): 2812-2812.
    DOI  |   Google Scholar
  49. Palumbo GA, Stella S, Pennisi MS, Pirosa C, Fermo E, Fabris S, et al. The role of new technologies in myeloproliferative neoplasms. Front Oncol. 2019; 9(APR).
    DOI  |   Google Scholar
  50. Lippert E, Girodon F, Hammond E, Jelinek J, Reading NS, Fehse B, et al. Concordance of assays designed for the quantification of JAK2V617F: A multicenter study. Haematologica. 2009; 94(1): 38-45.
    DOI  |   Google Scholar
  51. Maslah N, Verger E, Schlageter MH, Miclea JM, Kiladjian JJ, Giraudier S, et al. Next-generation sequencing for JAK2 mutation testing: advantages and pitfalls. Ann Hematol. 2019; 98(1): 111-8.
    DOI  |   Google Scholar
  52. Skov V. Next generation sequencing in MPNs. Lessons from the past and prospects for use as predictors of prognosis and treatment responses. Cancers (Basel). 2020; 12(8): 1-39.
    DOI  |   Google Scholar