Udayana University, Indonesia
Udayana University, Indonesia
Udayana University, Indonesia
Udayana University, Indonesia
Udayana University, Indonesia
Udayana University, Indonesia
* Corresponding author

Article Main Content

This study aims to prove a high apoptotic index in the amniotic membrane as a risk factor for preterm Labor. Case-control study, comparing preterm and term groups (n=54) who underwent labor in Obstetrics Emergency Room, Sanglah Central General Hospital Denpasar, Bali. Apoptotic index is a method of identifying and assessing the quantity of tissue undergoing apoptosis, which in this study was the amniotic membrane tissue, calculated and stained using the TUNEL method. Data collected was subjected to further statistical tests. Normality test with Shapiro Wilk test, followed by parametric independent T-test and Mann Whitney test was performed. Cut off apoptotic index was determined using the Receiver Operating Characteristic (ROC) curve. Bivariate analysis with Chi-square test and calculation of odds ratio was performed to assess the high apoptotic index to the risk of preterm Labor. Statistical significance was obtained with p value <0.05. Based on the cut-off value of ROC, the apoptotic index was classified into high (≥37.5%) and low (<37.5%) apoptotic index. A high apoptotic index is a risk factor for preterm Labor and increases the risk 6 times greater than the group with a low apoptotic index (p=0.003; OR 5.714; 95% CI 1.764–18.507). High apoptotic index in the amniotic membranes of pregnant women is a risk factor for preterm Labor.

References

  1. Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162-2172. doi:10.1016/S0140-6736(12)60820-4.
    DOI  |   Google Scholar
  2. Chawanpaiboon S, Vogel JP, Moller AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health. 2019;7(1):e37-e46. doi:10.1016/S2214-109X(18)30451-0.
    DOI  |   Google Scholar
  3. Sari IM, Adisasmita AC, Prasetyo S, Amelia D, Purnamasari R. Effect of premature rupture of membranes on preterm labor: a case-control study in Cilegon, Indonesia. Epidemiol Health. 2020;42:e2020025. doi:10.4178/epih.e2020025.
    DOI  |   Google Scholar
  4. Purisch SE, Gyamfi-Bannerman C. Epidemiology of preterm birth. Semin Perinatol. 2017;41(7):387-391. doi:10.1053/j.semperi.2017.07.009.
    DOI  |   Google Scholar
  5. Walani SR. Global burden of preterm birth. Int J Gynaecol Obstet. 2020;150(1):31-33. doi:10.1002/ijgo.13195.
    DOI  |   Google Scholar
  6. Sentana O, Kardana M. The associated factor of preterm birth incidence in sanglah hospital Denpasar. Medicina. 2017;48(2):83–87.
    DOI  |   Google Scholar
  7. Butali A, Ezeaka C, Ekhaguere O, et al. Characteristics and risk factors of preterm births in a tertiary center in Lagos, Nigeria. Pan Afr Med J. 2016;24:1. Published 2016 May 1. doi:10.11604/pamj.2016.24.1.8382.
    DOI  |   Google Scholar
  8. Harirah HM, Borahay MA, Zaman W, Ahmed MS, Hankins GD. Increased Apoptosis in Chorionic Trophoblasts of Human Fetal Membranes with Labor at Term. Int J Clin Med. 2012;3(2):136-142. doi:10.4236/ijcm.2012.32027.
    DOI  |   Google Scholar
  9. Kumar D, Moore RM, Mercer BM, Mansour JM, Moore JJ. Mechanism of Human Fetal Membrane Biomechanical Weakening, Rupture and Potential Targets for Therapeutic Intervention. Obstet Gynecol Clin North Am. 2020;47(4):523-544. doi:10.1016/j.ogc.2020.08.010.
    DOI  |   Google Scholar
  10. Menon R, Fortunato SJ. The role of matrix degrading enzymes and apoptosis in rupture of membranes. J Soc Gynecol Investig. 2004;11(7):427-437. doi:10.1016/j.jsgi.2004.04.001.
    DOI  |   Google Scholar
  11. Benirschke K, Graham B, Rebecca B. Anatomy and pathology of the placental membranes. Pathology of the human placenta. Springer Berlin Heidelberg, 2012;249-307. doi: 10.1007/978-3-642-23941-0_11.
    DOI  |   Google Scholar
  12. Chai M, Barker G, Menon R, Lappas M. Increased oxidative stress in human fetal membranes overlying the cervix from term non-labouring and post labour deliveries. Placenta. 2012;33(8):604-610. doi:10.1016/j.placenta.2012.04.014.
    DOI  |   Google Scholar
  13. Tarquini F, Picchiassi E, Coata G, et al. Induction of the apoptotic pathway by oxidative stress in spontaneous preterm birth: Single nucleotide polymorphisms, maternal lifestyle factors and health status. Biomed Rep. 2018;9(1):81-89. doi:10.3892/br.2018.1103.
    DOI  |   Google Scholar
  14. Saglam A, Ozgur C, Derwig I, Unlu BS, Gode F, Mungan T. The role of apoptosis in preterm premature rupture of the human fetal membranes. Arch Gynecol Obstet. 2013;288(3):501-505. doi:10.1007/s00404-013-2774-3.
    DOI  |   Google Scholar
  15. Runić R, Lockwood CJ, LaChapelle L, et al. Apoptosis and Fas expression in human fetal membranes. J Clin Endocrinol Metab. 1998;83(2):660-666. doi:10.1210/jcem.83.2.4600.
    DOI  |   Google Scholar
  16. Kataoka S, Furuta I, Yamada H, et al. Increased apoptosis of human fetal membranes in rupture of the membranes and chorioamnionitis. Placenta. 2002;23(2-3):224-231. doi:10.1053/plac.2001.0776.
    DOI  |   Google Scholar
  17. Negara KS, Suwiyoga K, Pemayun TGA, et al. The Role of Caspase-3, Apoptosis-Inducing Factor, and B-cell Lymphoma-2 Expressions in Term Premature Rupture of Membrane. Rev Bras Ginecol Obstet. 2018;40(12):733-739. doi:10.1055/s-0038-1675611.
    DOI  |   Google Scholar
  18. Fortunato SJ, Menon R. Distinct molecular events suggest different pathways for preterm labor and premature rupture of membranes. Am J Obstet Gynecol. 2001;184(7):1399-1406. doi:10.1067/mob.2001.115122.
    DOI  |   Google Scholar
  19. Negara KS, Prajawati NLLC, Surya GP, Suhendro S, Arijana K, Tunas K. Protein 53 (P53) Expressions and Apoptotic Index of Amniotic Membrane Cells in the Premature Rupture of Membranes. Open Access Maced J Med Sci. 2018;6(11):1986-1992. Published 2018 Nov 20. doi:10.3889/oamjms.2018.465.
    DOI  |   Google Scholar
  20. Cha HH, Kim JM, Kim HM, Kim MJ, Chong GO, Seong WJ. Association between gestational age at delivery and lymphocyte-monocyte ratio in the routine second trimester complete blood cell count. Yeungnam Univ J Med. 2021;38(1):34-38. doi:10.12701/yujm.2020.00234.
    DOI  |   Google Scholar
  21. Daglar HK, Kirbas A, Kaya B, Kilincoglu F. The value of complete blood count parameters in predicting preterm delivery. Eur Rev Med Pharmacol Sci. 2016;20(5):801-805.
     Google Scholar
  22. Fuchs F, Monet B, Ducruet T, Chaillet N, Audibert F. Effect of maternal age on the risk of preterm birth: A large cohort study. PLoS One. 2018;13(1):e0191002. Published 2018 Jan 31. doi:10.1371/journal.pone.0191002.
    DOI  |   Google Scholar
  23. Aregawi G, Assefa N, Mesfin F, et al. Preterm births and associated factors among mothers who gave birth in Axum and Adwa Town public hospitals, Northern Ethiopia, 2018. BMC Res Notes. 2019;12(1):640. Published 2019 Oct 2. doi:10.1186/s13104-019-4650-0.
    DOI  |   Google Scholar
  24. Egesa WI, Odong RJ, Kalubi P, et al. Preterm Neonatal Mortality and Its Determinants at a Tertiary Hospital in Western Uganda: A Prospective Cohort Study. Pediatric Health Med Ther. 2020;11:409-420. Published 2020 Oct 7. doi:10.2147/PHMT.S266675.
    DOI  |   Google Scholar
  25. Koullali B, van Zijl MD, Kazemier BM, et al. The association between parity and spontaneous preterm birth: a population based study. BMC Pregnancy Childbirth. 2020;20(1):233. Published 2020 Apr 21. doi:10.1186/s12884-020-02940-w.
    DOI  |   Google Scholar
  26. Slack E, Best KE, Rankin J, Heslehurst N. Maternal obesity classes, preterm and post-term birth: a retrospective analysis of 479,864 births in England. BMC Pregnancy Childbirth. 2019;19(1):434. Published 2019 Nov 21. doi:10.1186/s12884-019-2585-z.
    DOI  |   Google Scholar
  27. Johansson S, Villamor E, Altman M, Bonamy AK, Granath F, Cnattingius S. Maternal overweight and obesity in early pregnancy and risk of infant mortality: a population based cohort study in Sweden. BMJ. 2014;349:g6572. Published 2014 Dec 2. doi:10.1136/bmj.g6572.
    DOI  |   Google Scholar
  28. Hendler I, Goldenberg RL, Mercer BM, et al. The Preterm Prediction Study: association between maternal body mass index and spontaneous and indicated preterm birth. Am J Obstet Gynecol. 2005;192(3):882-886. doi:10.1016/j.ajog.2004.09.021.
    DOI  |   Google Scholar
  29. Johnson TS, Rottier KJ, Luellwitz A, Kirby RS. Maternal prepregnancy body mass index and delivery of a preterm infant in missouri 1998-2000. Public Health Nurs. 2009;26(1):3-13. doi:10.1111/j.1525-1446.2008.00750.x.
    DOI  |   Google Scholar
  30. Menon R. Oxidative stress damage as a detrimental factor in preterm birth pathology. Front Immunol. 2014;5:567. Published 2014 Nov 12. doi:10.3389/fimmu.2014.00567.
    DOI  |   Google Scholar
  31. Inaba H, Amano A, Lamont RJ, Murakami Y, Matsumoto-Nakano M. Cell Cycle Arrest and Apoptosis Induced by Porphyromonas gingivalis Require Jun N-Terminal Protein Kinase- and p53-Mediated p38 Activation in Human Trophoblasts. Infect Immun. 2018;86(4):e00923-17. Published 2018 Mar 22. doi:10.1128/IAI.00923-17.
    DOI  |   Google Scholar
  32. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. doi:10.1080/01926230701320337.
     Google Scholar
  33. Kumar D, Fung W, Moore RM, et al. Proinflammatory cytokines found in amniotic fluid induce collagen remodeling, apoptosis, and biophysical weakening of cultured human fetal membranes. Biol Reprod. 2006;74(1):29-34. doi:10.1095/biolreprod.105.045328.
    DOI  |   Google Scholar
  34. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. doi:10.1080/01926230701320337.
    DOI  |   Google Scholar
  35. Suff N, Karda R, Diaz JA, et al. Ascending Vaginal Infection Using Bioluminescent Bacteria Evokes Intrauterine Inflammation, Preterm Birth, and Neonatal Brain Injury in Pregnant Mice. Am J Pathol. 2018;188(10):2164-2176. doi:10.1016/j.ajpath.2018.06.016.
    DOI  |   Google Scholar
  36. Ingles J, Simpson A, Kyathanahalli C, et al. Preconditioning the uterine unfolded protein response maintains non-apoptotic Caspase 3-dependent quiescence during pregnancy. Cell Death Dis. 2018;9(10):933. Published 2018 Sep 17. doi:10.1038/s41419-018-1000-4.
    DOI  |   Google Scholar
  37. Gotsch F, Romero R, Chaiworapongsa T, et al. Evidence of the involvement of caspase-1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition. J Matern Fetal Neonatal Med. 2008;21(9):605-616. doi:10.1080/14767050802212109.
    DOI  |   Google Scholar
  38. Murtha AP, Auten R, Herbert WN. Apoptosis in the chorion laeve of term patients with histologic chorioamnionitis. Infect Dis Obstet Gynecol. 2002;10(2):93-96. doi:10.1155/S106474490200008X.
    DOI  |   Google Scholar
  39. Menon R, Fortunato SJ. Distinct pathophysiologic pathways induced by in vitro infection and cigarette smoke in normal human fetal membranes. Am J Obstet Gynecol. 2009;200(3):334.e1-334.e3348. doi:10.1016/j.ajog.2008.12.051.
    DOI  |   Google Scholar


Most read articles by the same author(s)

1 2 3 > >>