##plugins.themes.bootstrap3.article.main##

West Nile Virus has been an increased concern for many countries over the past couple of decades. We examine West Nile Virus surveillance strategies around the world and identify West Nile Virus control methods in endemic countries and demonstrate their effectiveness and efficiency. Despite the ample amount of research, monitoring and control methods conducted by public health agencies, West Nile Virus remains a continuous health threat to the public. Countries that report West Nile Virus cases are identified and searched for articles and national protocols to explore their strategies in controlling the virus. It is essential to discuss all methods of prevention in a global context and demonstrate the most efficient and effective strategy. Data were collected from published articles on PubMed and governmental websites. All the documents were selected upon descriptive surveillance and control methods in endemic countries. The generated data were identified and compared to Center for Disease Control and Prevention recommendations. Thorough details about West Nile Virus control methods were identified in Canada and the United States, while strategies in the endemic countries are sparse. There is a substantial lack of published data in some endemic countries. Therefore, it is suggested that public health agencies publish the strategies found to be most efficient and effective and share them at an international level. This paper provides reference to public health agencies at a global level to strengthen the interventions in controlling the West Nile Virus.

Downloads

Download data is not yet available.

References

  1. World Health Organisation. (October 2017). West Nile Virus. Key Facts. https://www.who.int/news-room/fact- sheets/detail/west-nile-virus.
     Google Scholar
  2. Nasci, R. S., Fischer, M., Lindsey, N. P., Lanciotti, R. S., Savage, H. M., Komar, N., McAllister, J. C., Mutebi, J-P., Lavelle, J, M., Zielinski-Gutierrez, E., and Petersen, L. P. (June 2013). West Nile Virus in the United States: Guidelines for Surveillance, Prevention and Control. Resource document. Center for Disease Control and Prevention. Division of Vector-Borne Diseases. https://www.cdc.gov/westnile/resources/pdfs/wnvGuidelines.pdf.
     Google Scholar
  3. Reed, L. M., Johansson, M. A., Panella, N., McLean, R., Creekmore, T., Puelle, R., & Komar, N. (2009). Declining mortality in American crow (corvus brachyrhynchos) following natural west nile virus infection. Avian Diseases, 53(3), 458- 461. https://doi.org/10.1637/8468-091208-ResNote.1.
     Google Scholar
  4. Patnaik, J. L., Juliusson, L., & Vogt, R. L. (2007). Environmental predictors of human west nile virus infections, colorado. Emerging Infectious Diseases, 13(11), 1788-1790. https://doi.org/10.3201/eid1311.070506.
     Google Scholar
  5. Enviornmental Protection Agency. (n.d.). Controlling Adult Mosquitoes. United States.
     Google Scholar
  6. https://www.epa.gov/mosquitocontrol/controlling-adult- mosquitoes.
     Google Scholar
  7. Sirbu, A., Popovici, F., Pistol, A., Serban, R., Pitigoi, D., Posea, C., Ceianu, C., Nicolescu, G., Bellini, R., Coulombier, D., Depoortere, E., Domanovic, D., Herrador, Z., Leitmeyer, K., Lenglet, A., Marrama, L., Rehmet, S., Robinson, E., Santos O.C, F., Bortel, W. V., Warns, P. E., and Zeller, H. (July 2013). Technical report. West Nile Virus Risk Assessment tool. Resource document. European Center for Disease Prevention and Control.
     Google Scholar
  8. https://www.ecdc.europa.eu/sites/default/files/media/en/publicat ions/Publications/west-nile-virus-risk-assessment-tool.pdf.
     Google Scholar
  9. Patsoula, E., Vakali, A., Balatsos, G., Pervanidou, D., Beleri, S., Tegos, N., Baka, A., Spanakos, G., Georgakopoulou, T., Tserkezou, P., Van Bortel, W., Zeller, H., Menounos, P., Kremastinou, J., and Hadjichristodoulou, C. (2016). West Nile Viruse Circulation in Mosquitoes in Greece (2010-2013), BioMed research international, 2016, 2450682. https://doi.org/10.1155/2016/2450682.
     Google Scholar
  10. Chaintoutis, S. C., Chaskopoulou, A., Chassalevris, T., Koehler, P. G., Papanastassopoulou, M., and Dovas, C. I. (2013). West Nile virus lineage 2 strain in Greece, 2012. Emerging infectious diseases, 19(5), 827–829. https://doi.org/10.3201/eid1905.121418.
     Google Scholar
  11. Chaskopoulou, A., Dovas, C. I., Chaintoutis, S. C., Kashefi, J., Koehler, P., and Papanastassopoulou, M. (2013). Detection and early warning of West Nile Virus circulation in Central Macedonia, Greece, using sentinel chickens and mosquitoes. Vector borne and zoonotic diseases (Larchmont, N.Y.), 13(10), 723–732. https://doi.org/10.1089/vbz.2012.1176.
     Google Scholar
  12. Chaintoutis, S. C., Dovas, C. I., Danis, K., Gewehr, S., Mourelatos, S., Hadjichristodoulou, C., and Papanastassopoulou, M. (2015). Surveillance and early warning of west nile virus lineage 2 using backyard chickens and correlation to human neuroinvasive cases. Zoonoses and Public Health, 62(5), 344 355. https://doi.org/10.1111/zph.12152.
     Google Scholar
  13. Chaintoutis, S. C., Gewehr, S., Mourelatos, S., and Dovas, C. I. (2016). Serological monitoring of backyard chickens in central macedonia-greece can detect low transmission of west nile virus in the absence of human neuroinvasive disease cases. Acta Tropica, 163, 26-31. https://doi.org/10.1016/j.actatropica.2016.07.018.
     Google Scholar
  14. Chaintoutis, S. C., Dovas, C. I., Papanastassopoulou, M., Gewehr, S., Danis, K., Beck, C., Lecollinet, S., Antalis, V., Kalaitzopoulou, S., Panagiotopoulos, T., Mourelatos, S., Zientara, S., and Papadopoulos, O. (2014). Evaluation of a west nile viruse surveillance and early warning system in greece, based on domestic pigeons. Comparative Immunology, Microbiology and Infectious Diseases, 37(2), 131-141. https://doi.org/10.1016/j.cimid.2014.01.004.
     Google Scholar
  15. Ceianu, C. S., Ungureanu, A., Nicolescu, G., Cernescu, C., Nitescu, L., Tardei, G., Petrescu, A., Pitigoi, D., Martin, D., Ciulacu-Purcarea, V., Vladimirescu, A., and Savage, H. M. (2001). West nile virus surveillance in romania: 1997-2000. Viral Immunology, 14(3), 251-262. https://doi.org/10.1089/088282401753266765.
     Google Scholar
  16. Campbell, G. L., Ceianu, C. S., and Savage, H. M. (2001). Epidemic West Nile encephalitis in Romania: waiting for history to repeat itself. Annals of the New York Academy of Sciences, 951, 94–101.
     Google Scholar
  17. Tomazatos, A., Jansen, S., Pfister, S., Török, E., Maranda, I., Horváth, C., Keresztes, L., Spînu, M., Tannich, E., Jöst, H., Schmidt-Chanasit, J., Cadar, D., and Lühken, R. (2019). Ecology of west nile virus in the danube delta, romania: Phylogeography, xenosurveillance and mosquito host-feeding patterns. Viruses, 11(12), 1159. https://doi.org/10.3390/v11121159.
     Google Scholar
  18. Nicolescu, G. M., Ciulacu, V. S. P., Vladimirescu, A., Coipan, E. C., Petrisor, A. I., Dumitrescu, G., Saizu, D., Savin, E., Sandric, I., and Mihai, F. (2016). Emergence risk and surveillance of west nile virus infections in romania. International Journal of Infectious Diseases, 53, 158-159. https://doi.org/10.1016/j.ijid.2016.11.387.
     Google Scholar
  19. Velati, C., Angelini, P., and Pupella, S. (2017). State of the art: Vest Nile Virus circulation surveillance in Italy and transfusion risk early prevention methods. Transfusion clinique et biologique: journal de la Societe francaise de transfusion sanguine, 24(3), 172–175. https://doi.org/10.1016/j.tracli.2017.06.019.
     Google Scholar
  20. Bellini, R., Calzolari, M., Mattivi, A., Tamba, M., Angelini, P., Bonilauri, P., Albieri, A., Cagarelli, R., Carrieri, M., Dottori, M., Finarelli, A., Gaibani, P., Landini, M., Natalini, S., Pascarelli, N., Rossini, G., Velati, C., Vocale, C., and Bedeschi, E. (2014). The experience of west nile virus integrated surveillance system in the emilia-romagna region: Five years of implementation, italy, 2009 to 2013. Euro Surveillance: Bulletin Européen Sur Les Maladies Transmissibles, 19(44), 20953.
     Google Scholar
  21. https://doi.org/10.2807/1560- 7917.ES2014.19.44.20953.
     Google Scholar
  22. Salama, M., Amitai, Z., Lustig, Y., Mor, Z., Weiberger, M., Chowers, M., Maayan, S., Zimhony, O., Ben-Ami, R., Chazan, B., Zaltzman-Bershadsky, N., Cohen, R., Tsyba, E., Sheffer, R., Anis, E., Glazer, Y., Pessah, S., Mendelson, E., and Leshem, E. (2019). Outbreak of west nile virus disease in israel (2015): A retrospective analysis of notified cases. Travel Medicine and Infectious Disease, 28, 41-45. https://doi.org/10.1016/j.tmaid.2018.07.008.
     Google Scholar
  23. Lustig, Y., Hindiyeh, M., Orshan, L., Weiss, L., Koren, R., Katz- Likvornik, S., Zadka, H., Glatman-Freedman, A., Mendelson, E., and Shulman, L. M. (2016). Mosquito surveillance for 15 years reveals high genetic diversity among west nile viruses in israel. The Journal of Infectious Diseases, 213(7), 1107-1114.
     Google Scholar
  24. https://doi.org/10.1093/infdis/jiv556.
     Google Scholar
  25. Lustig, Y., Kaufman, Z., Mendelson, E., Orshan, L., Anis, E., Glazer, Y., Cohen, D., Shohat, T., and Bassal, R. (2017). Spatial distribution of west nile virus in humans and mosquitoes in israel, 2000–2014. International Journal of Infectious Diseases, 64, 20- 26. https://doi.org/10.1016/j.ijid.2017.08.011.
     Google Scholar
  26. Aharonson-Raz, K., Lichter-Peled, A., Tal, S., Gelman, B., Cohen, D., Klement, E., and Steinman, A. (2014). Spatial and temporal distribution of west nile virus in horses in israel (1997- 2013)-from endemic to epidemics. PloS One, 9(11), e113149- e113149. https://doi.org/10.1371/journal.pone.0113149.
     Google Scholar
  27. Shuai, J., Buck, P., Sockett, P., Aramini, J., and Pollari, F. (2006). A GIS-driven integrated real-time surveillance pilot system for national West Nile virus dead bird surveillance in Canada. International journal of health geographics, 5, 17. https://doi.org/10.1186/1476-072X-5-17.
     Google Scholar
  28. Government of Canada. (February 2021). Surveillance of West Nile Virus. https://www.canada.ca/en/public- health/services/diseases/west-nile-virus/surveillance-west-nile- virus.html.
     Google Scholar
  29. Giordano, B. V., Kaur, S., and Hunter, F. F. (2017). West Nile virus in Ontario, Canada: A twelve-year analysis of human case prevalence, mosquito surveillance, and climate data. PloS one, 12(8), e0183568. https://doi.org/10.1371/journal.pone.0183568.
     Google Scholar
  30. Region of Peel. (July 2017). Mosquitoes and tick-borne diseases. Larviciding. https://www.peelregion.ca/health/vbd/larviciding.htm.
     Google Scholar
  31. Integrated Pest Management Guide. (2016). Integrated Pest Management. Quick Guide for Provincial Cost-Share Participants. Resource document. Government of Manitoba. https://www.gov.mb.ca/health/wnv/docs/ipm_costshare.pdf.
     Google Scholar
  32. Institute National De Sante Publique du Quebec. (May 2016). Report on Surveillance of the West Nile Virus and other Arboviruses in Quebec: 2016 Season. Resource document. https://www.inspq.qc.ca/sites/default/files/publications/2416_re port_surveillance_west_nile_virus_other_arboviruses_2016.pdf.
     Google Scholar
  33. Webster, P. R., Giguere, M. A., Maltais, P., Roy, J., Gallie, L., and Edsal, J. (January 2004). Survey of the mosquitoes of New Brunswick. Government of New Brunswick. Resource document. https://www2.gnb.ca/content/dam/gnb/Departments/h- s/pdf/en/CDC/MosquitoeSurvey.pdf.
     Google Scholar
  34. Nova Scotia. (May 2003). Nova Scotia Prepares for West Nile Virus Season. https://novascotia.ca/news/release/?id=20030508002.
     Google Scholar
  35. Department of Natural Resources Animal Health Division. (2010, May). West Nile Virus Surveillance. Resource document. Newfoundland Labrador. https://www.gov.nl.ca/ffa/files/agrifoods-animals-health-pdf-ds- 08-002.pdf. Accessed 14 April 2021.
     Google Scholar
  36. Nash, D., Mostashari, F., Fine, A., Miller, J., O'Leary, D., Murray, K., Huang, A., Rosenberg, A., Greenberg, A.,Sherman, M., Wong, S., Layton, M., and 1999 West Nile Outbreak Response Working Group (2001). The outbreak of West Nile virus infection in the New York City area in 1999. The New England journal of medicine, 344(24), 1807–1814. https://doi.org/10.1056/NEJM200106143442401.
     Google Scholar
  37. Eidson, M., Miller, J., Kramer, L., Cherry, B., Hagiwara, Y., and West Nile Virus Bird Mortality Analysis Group (2001). Dead crow densities and human cases of West Nile virus, New York State, 2000. Emerging infectious diseases, 7(4), 662–664.
     Google Scholar
  38. https://doi.org/10.3201/eid0704.010411.
     Google Scholar
  39. Julian, K. G., Eidson, M., Kipp, A. M., Weiss, E., Petersen, L. R., Miller, J. R., Hinten, S. R., and Marfin, A. A. (2002). Early season crow mortality as a sentinel for West Nile virus disease in humans, northeastern United States. Vector borne and zoonotic diseases (Larchmont, N.Y.), 2(3), 145–155.
     Google Scholar
  40. https://doi.org/10.1089/15303660260613710.
     Google Scholar
  41. Carney, R. M., Ahearn, S. C., McConchie, A., Glasner, C., Jean, C., Barker, C., Park, B., Padgett, K., Parker, E., Aquino, E., and Kramer, V. (2011). Early warning system for west nile virus risk areas, california, USA. Emerging Infectious Diseases, 17(8), 1445-1454. https://doi.org/10.3201/eid1708.100411.
     Google Scholar
  42. Friesen, K. M., and Johnson, G. D. (2014). Mosquito and west nile virus surveillance in northeast montana, U.S.A., 2005 and 2006: Mosquito and west nile virus surveillance. Medical and Veterinary Entomology, 28(1), 85-93. https://doi.org/10.1111/mve.12011.
     Google Scholar
  43. Petersen L. R. (2019). Epidemiology of West Nile Virus in the United States: Implications for Arbovirology and Public Health. Journal of medical entomology, 56(6), 1456–1462.
     Google Scholar
  44. https://doi.org/10.1093/jme/tjz085.
     Google Scholar
  45. Poh, K. C., Chaves, L. F., Reyna-Nava, M., Roberts, C. M., Fredregill, C., Bueno, R., Debboun, M., and Hamer, G. L. (2019). The influence of weather and weather variability on mosquito abundance and infection with West Nile virus in Harris County, Texas, USA. Science of The Total Environment, 675(Complete), 260–272.
     Google Scholar
  46. https://doi.org/10.1016/j.scitotenv.2019.04.109.
     Google Scholar
  47. Diana P. Barajas P, Karl A. Ciuoderis A, G, D. C., O, A. G., B, J. O., Camilo E. Pacheco P, Nestor I. Monroy O, and Gloria D Tovar B. (2020). Epidemiological surveillance of west nile virus in the eastern plains of colombia. Revista MVZ Córdoba, 25(1), e1252.
     Google Scholar
  48. Micieli, M. V., Matacchiero, A. C., Muttis, E., Fonseca, D. M., Aliota, M. T., and Kramer, L. D. (2013). Vector competence of Argentine mosquitoes (Diptera: Culicidae) for West Nile virus (Flaviviridae:Flavivirus). Journal of medical entomology, 50(4), 853–862. https://doi.org/10.1603/me12226.
     Google Scholar
  49. Pauvolid-Corrêa, A., Morales, M. A., Levis, S., Figueiredo, L. T. M., Couto-Lima, D., Zilca, C., Nogueira, M. F., da Silva, E. E., Nogueira, R. M. R., and Schatzmayr, H. G. (2011). Neutralising antibodies for west nile virus in horses from brazilian pantanal. Memórias do Instituto Oswaldo Cruz, 106(4), 467-474.
     Google Scholar
  50. https://doi.org/10.1590/S0074-02762011000400014.
     Google Scholar
  51. Sandhu, T. S., Sidhu, D. S., and Sandhu, G. K. (2010). West nile virus: do we need its surveillance and control program in punjab state of India?. Indian journal of community medicine: official publication of Indian Association of Preventive & Social Medicine, 35(2), 211–213. https://doi.org/10.4103/0970- 0218.66856.
     Google Scholar
  52. Kalaiyarasu, S., Mishra, N., Khetan, R. K., and Singh, V. P. (2016). Serological evidence of widespread West Nile virus and Japanese encephalitis virus infection in native domestic ducks (Anas platyrhynchos var domesticus) in Kuttanad region, Kerala, India. Comparative immunology, microbiology and infectious diseases, 48, 61–68. https://doi.org/10.1016/j.cimid.2016.08.002.
     Google Scholar
  53. Khan, S. A., Kakati, S., Chowdhury, P., and Dutta, P. (2016). West Nile Virus circulation and incrimination of mosquito vectors in Northeast India. International Journal of Infectious Diseases, 45(Supplement 1), 179–179. https://doi.org/10.1016/j.ijid.2016.02.420.
     Google Scholar
  54. Azari-Hamidian, S., Norouzi, B., Noorallahi, A., and Ali Hanafi- Bojd, A. (2018;2019;). Seasonal activity of adult mosquitoes (diptera: Culicidae) in a focus of dirofilariasis and west nile infection in northern iran. Journal of Arthropod-Borne Diseases, 12(4), 398-413. https://doi.org/10.18502/jad.v12i4.358.
     Google Scholar
  55. Adham, D., Moradi-Asl, E., Vatandoost, H., and Saghafipour, A. (2019). Ecological Niche Modeling of West Nile Virus Vector in Northwest of Iran. Oman medical journal, 34(6), 514–520. https://doi.org/10.5001/omj.2019.94.
     Google Scholar
  56. Ergünay, K., Litzba, N., Brinkmann, A., Günay, F., Sarıkaya, Y., Kar, S., Örsten, S., Öter, K., Domingo, C., Erisoz Kasap, Ö., Özkul, A., Mitchell, L., Nitsche, A., Alten, B., and Linton, Y.-M. (2017). Co-circulation of West Nile virus and distinct insect- specific flaviviruses in Turkey. Parasites & Vectors, 10. https://doi.org/10.1186/s13071-017-2087-7.
     Google Scholar
  57. Akıner, M. M., Öztürk, M., Başer, A. B., Günay, F., Hacıoğlu, S., Brinkmann, A., Emanet, N., Alten, B., Özkul, A., Nitsche, A., Linton, Y., and Ergünay, K. (2019). Arboviral screening of invasive aedes species in northeastern turkey: West nile virus circulation and detection of insect-only viruses. PLoS Neglected Tropical Diseases, 13(5), e0007334- e0007334. https://doi.org/10.1371/journal.pntd.0007334.
     Google Scholar
  58. Fyodorova, M. V., Savage, H. M., Lopatina, J. V., Bulgakova, T. A., Ivanitsky, A. V., Platonova, O. V., and Platonov, A. E. (2006). Evaluation of potential west nile virus vectors in volgograd region, russia, 2003 (diptera: Culicidae): Species composition, bloodmeal host utilization, and virus infection rates of mosquitoes. Journal of Medical Entomology, 43(3), 552- 563.
     Google Scholar
  59. https://doi.org/10.1093/jmedent/43.3.552.
     Google Scholar
  60. Prow, N. A., Edmonds, J. H., Williams, D. T., Setoh, Y. X., Bielefeldt-Ohmann, H., Suen, W. W., Hobson-Peters, J., van den Hurk, A. F., Pyke, A. T., Hall-Mendelin, S., Northill, J. A., Johansen, C. A., Warrilow, D., Wang, J., Kirkland, P. D., Doggett, S., Andrade, C. C., Brault, A. C., Khromykh, A. A., and Hall, R. A. (2016). Virulence and Evolution of West Nile Virus, Australia, 1960-2012. Emerging infectious diseases, 22(8), 1353–1362.
     Google Scholar
  61. https://doi.org/10.3201/eid2208.151719.
     Google Scholar
  62. van den Hurk, A.F., Hall-Mendelin, S., Webb, and C.E. Role of enhanced vector transmission of a new West Nile virus strain in an outbreak of equine disease in Australia in 2011. Parasites Vectors 7, 586 (2014). https://doi.org/10.1186/s13071-014-0586- 3.
     Google Scholar
  63. Hall-Mendelin, S., McLean, B. J., Bielefeldt-Ohmann, H., Hobson-Peters, J., Hall, R. A., and van den Hurk, A. F. (2016). The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Parasites & Vectors, 9. https://doi.org/10.1186/s13071-016-1683-2.
     Google Scholar
  64. Hernández-Jover, M., Roche, S., and Ward, M. P. (2013). The human and animal health impacts of introduction and spread of an exotic strain of West Nile virus in Australia. Preventive Veterinary Medicine, 109(3–4), 186–204. https://doi.org/10.1016/j.prevetmed.2012.09.018.
     Google Scholar
  65. Wasfi, F., Dachraoui, K., Cherni, S., Bosworth, A., Barhoumi, W., Dowall, S., Chelbi, I., Derbali, M., Zoghlami, Z., Beier, J. C., and Zhioua, E. (2016). West Nile virus in Tunisia, 2014: First isolation from mosquitoes. Acta Tropica, 159(Complete), 106– 110. https://doi.org/10.1016/j.actatropica.2016.03.037.
     Google Scholar
  66. Monastiri, A., Mechri, B., Vázquez-González, A., Ar Gouilh, M., Chakroun, M., Loussaief, C., Mastouri, M., Dimassi, N., Boughzala, L., Aouni, M., and Serra-Cobo, J. (2018;2019;). A four-year survey (2011-2014) of west nile virus infection in humans, mosquitoes and birds, including the 2012 meningoencephalitis outbreak in tunisia. Emerging Microbes & Infections, 7(1), 1-10. https://doi.org/10.1038/s41426-018-0028- y.
     Google Scholar
  67. Kolawole, O. E., and Kola, O. J. (2015). West Nile Virus Infection in Ogbomoso: Serological Evidence. Journal of Immunoassay and Immunochemistry, 36(6), 573–578. https://doi.org/10.1080/15321819.2015.1017105.
     Google Scholar
  68. Venter, M., Pretorius, M., Fuller, J. A., Botha, E., Rakgotho, M., Stivaktas, V., Weyer, C., Romito, M., and Williams, J. (2017). West nile virus lineage 2 in horses and other animals with neurologic disease, south africa, 2008-2015. Emerging Infectious Diseases, 23(12), 2060-2064. https://doi.org/10.3201/eid2312.162078
     Google Scholar
  69. Steyn, J., Botha, E., Stivaktas, V. I., Buss, P., Beechler, B. R., Myburgh, J. G., Steyl, J., Williams, J., and Venter, M. (2019). West Nile Virus in Wildlife and Nonequine Domestic Animals, South Africa, 2010-2018. Emerging infectious diseases, 25(12), 2290–2294. https://doi.org/10.3201/eid2512.190572.
     Google Scholar
  70. Paz S. (2015). Climate change impacts on West Nile virus transmission in a global context. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 370(1665), 20130561. https://doi.org/10.1098/rstb.2013.0561.
     Google Scholar
  71. Chen, C. C., Jenkins, E., Epp, T., Waldner, C., Curry, P. S., and Soos, C. (2013). Climate change and West Nile virus in a highly endemic region of North America. International journal of environmental research and public health, 10(7), 3052–3071. https://doi.org/10.3390/ijerph10073052.
     Google Scholar
  72. Mackenzie, J. S., Gubler, D. J., and Petersen, L. R. (2004). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature medicine, 10(12 Suppl), S98–S109. https://doi.org/10.1038/nm1144.
     Google Scholar
  73. Ozdenerol, E., Taff, G. N., and Akkus, C. (2013). Exploring the spatio-temporal dynamics of reservoir hosts, vectors, and human hosts of West Nile virus: a review of the recent literature. International journal of environmental research and public health, 10(11), 5399–5432. https://doi.org/10.3390/ijerph10115399.
     Google Scholar
  74. Paz, S., Malkinson, D., Green, M. S., Tsioni, G., Papa, A., Danis, K., Sirbu, A., Ceianu, C., Katalin, K., Ferenczi, E., Zeller, H., and Semenza, J. C. (2013). Permissive summer temperatures of the 2010 european west nile fever upsurge. PloS One, 8(2), e56398- e56398. https://doi.org/10.1371/journal.pone.0056398.
     Google Scholar
  75. Health Protection and Promotion Act. R.S.O. 1990, c. H.7. O. Reg. 199/03: CONTROL OF WEST NILE VIRUS. https://www.ontario.ca/laws/regulation/030199.
     Google Scholar
  76. Annual epidemiological report for 2019. (March 2021). West Nile Virus Infection. Resource document. European Center for Disease Control and Prevention. https://www.ecdc.europa.eu/sites/default/files/documents/AER- WNV-infection-2019.pdf.
     Google Scholar