University of Delhi, India
* Corresponding author
Duke University School of Medicine, USA
Indira Gandhi National Open University, India
, Path Kind Labs, India

Article Main Content

Reports of clinical isolates of Cryptococcus neoformans often lack information on their mating types, molecular types, and in vitro antimycotic susceptibilities. This study compares these and other related characteristics of fifteen strains of C. neoformans obtained from cases of meningitis in different regions of India. PCR was used to determine the mating type and serotype of each strain, and Amplified Fragment Length Polymorphism was used for molecular typing of the strains. In vitro assays compared the proteinase and phospholipase activities of the strains, and the Clinical and Laboratory Standards Institute (CLSI) protocol was used to determine their minimal inhibitory concentrations (MICs) to amphotericin B (AMB), itraconazole, and fluconazole. All strains were identified as C. neoformans var. grubii (serotype A), possessed the alpha mating type, and belonged to molecular type VNII. Ten of the strains demonstrated strong proteolytic activity, and the remaining five were weakly proteolytic. Nine of the strains were positive for phospholipase. In vitro antifungal susceptibility tests, determined the MIC (µg/ml) values for AMB, itraconazole, and fluconazole to be 0.03-0.5, 0.002-03, and 2-4 µg/ml, respectively. Remarkedly, all 15 strains belonged to the relatively rare molecular type, VNII. This report is one of few studies to characterize clinical strains of C. neoformans from India.

References

  1. Almeida F, Wolf JM, Casadeval A. Virulence-associated enzymes of Cryptococcus neoformans. Eukaryot Cell 2015;14(12):1173-85.
    DOI  |   Google Scholar
  2. Banerjee U, Datta K, Casadevall A. Serotype distribution of Cryptococcus neoformans in patients in a tertiary care center in India. Med Mycol 2004;42(2):181-6.
    DOI  |   Google Scholar
  3. Casadevall A, Perfect JR Cryptococcus neoformans. Washington DC: American Society for Microbiology Press, 1998.
    DOI  |   Google Scholar
  4. Chakrabarti, A, Nayak N, Talwar P. In vitro proteinase production by Candida species. Mycopathologia 1991;114(3):163-8.
    DOI  |   Google Scholar
  5. Cogliati M. Global Molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica 2013; DOI: 10.1155/2013/675213.
    DOI  |   Google Scholar
  6. Cogliati M, Andrianarivelo MR, Ellabib M, Nandi EN, Cornet M. Molecular-type specific multiplex PCR produces a distinct VNII PCR pattern among Cryptococcus neoformans species complex. Med Mycol 2019;57(3):384-86.
    DOI  |   Google Scholar
  7. Datta K, Jain, Sethi S, Rattan A, Casadevall A, Banerjee U. Fluconazole and itraconazole susceptibility of clinical isolates of Cryptococcus neoformans at a tertiary care center in India: a need for care. J Antimicrobial Chemotherap 2003;52(4):683-6.
    DOI  |   Google Scholar
  8. Favalessa OC, DAJ de Paulautra V, Nakazalo L, Tadna T, Lazera MD, Wanke B. et al. Molecular typing and in vitro antifungal susceptibility of Cryptococcus spp from patients in Midwest Brazil. J Infect Dev Ctries 2014;8(8):1037-43.
    DOI  |   Google Scholar
  9. Franzot SP, Salkin IF, Casadevall A. Cryptococcus neoformans var. grubii: separate varietal status for Cryptococcus neoformans serotype A isolates. J Clin Microbiol 1999;37(2):838-40.
    DOI  |   Google Scholar
  10. Gugnani HC, Mitchell TG, Litvintseva AP, Lengeler K Heitman J. Kumar A, Basu S and Paliwal-Joshi A. Isolation of Cryptococcus gattii and C. neoformans var. grubii from the flowers and bark of Eucalyptus trees in India. Medical Mycology 2005(6);43(6):565-9.
    DOI  |   Google Scholar
  11. Heitman J, Kozel T, Kwon-Chung KJ et al. Eds. Cryptococcus: from human pathogenic model Yeast. Washington, DC, USA: American Society for Microbiology Press, 2010.
    DOI  |   Google Scholar
  12. Ito-Kuwa S, NaKamura K, Aoki S, Vidotto V. Serotype identification of Cryptococcus neoformans by multiplex PCR. Mycoses 2007;50(4):277-81.
    DOI  |   Google Scholar
  13. Khan ZU, Randhawa HS, Kowshik t, Chowdhary A, Chandy R. Antifungal susceptibility of Cryptococcus neoformans and Cryptococcus gattii isolates from decayed wood of trunk hollows of Ficus religiosa and Syzygium cumini trees in north-western India. J Antimicrobial Chemotherap 2007;60(2):312-6.
    DOI  |   Google Scholar
  14. Kurtzman P, Fell JW Eds The yeasts – A Taxonomic Study 4th Edition, Amsterdam, Elsevier, 1998.
     Google Scholar
  15. Lengeler KB, Wang P, Cox GM, Perfect JR, Heitman J. Identification of the MATa mating-type locus of Cryptococcus neoformans reveals a serotype A MATa strain thought to have become extinct. Proc Natl Acad Sci USA2000 Dec 19;97(26):14455-60.doi: 10.1073/pnas.97.265.
    DOI  |   Google Scholar
  16. Lengeler KL, Cox GM, Heitman J. Serotype AD strains of Cryptococcus neoformans are diploid or aneuploid and are heterozygous at 14 mating type locus. Infect Immun 2001:69(1):115-22.
    DOI  |   Google Scholar
  17. Litvintseva AP, Marra RE, Nielsen K, Heitman J, Vilgalys RJ, Mitchell TG. Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryotic Cell 2003;2(6):1162-68,
    DOI  |   Google Scholar
  18. Nnadi NE, Enweani IB, Cogliati M, Ayanbimpe GM, Okolo MO, Kim E, Sabitu MZ, Criseo G, Romeo O, Scordino F. Molecular characterization of environmental Cryptococcus neoformans VNII isolates in Jos, Plateau State, Nigeria. J Med Mycol 2016 26(4): 306-11.
    DOI  |   Google Scholar
  19. Polak A. Virulence of Candida albicans mutants. Mycoses 1991;35(1-2):9–16.
    DOI  |   Google Scholar
  20. Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity of Candida albicans. Sabouraudia 1998;20(1):7-14.
    DOI  |   Google Scholar
  21. Ruchel, R., R. Tegeler, M.A Trost. A. comparison of secretory proteases from different strains of Candida albicans. Sabouraudia 1982;20(3):233-34.
    DOI  |   Google Scholar