Nnamdi Azikiwe University, Awka, Nigeria
College of Medicine University of Lagos, Nigeria
Lagos University Teaching Hospital, Nigeria
University of Calabar, Nigeria
, College of Medicine University of Lagos, Nigeria
College of Medicine University of Lagos, Nigeria
Lagos University Teaching Hospital, Nigeria
Lagos University Teaching Hospital, Nigeria
Nnamdi Azikiwe University, Awka, Nigeria
* Corresponding author

Article Main Content

Irrational antibiotics use has added to the escalation of antibiotics resistance, especially among hospitalized patients on prolonged urethral catheterization, a significant risk factor for urinary tract infection and urosepsis. Extended-spectrum β-lactamases are transferable plasmid-mediated resistance mechanism orchestrated majorly by Enterobacteriaceae, which confer resistance to β- lactam antibiotics and other classes of antibiotics. This work was aimed at determining the molecular characteristics of uropathogenic Escherichia coli and Klebsiella spp involved in urinary tract infections among patients on prolonged urethral catheterization in two major tertiary hospitals in Lagos. One hundred and one samples were collected from participants in Lagos University Teaching Hospital and 68 Army Reference Hospital Yaba, between November 2015 and May 2016. The mean age of the participants was 49.04± 8.8years.

Single, non -repeat aseptically aspirated urine specimens from the catheter ports were obtained from consenting participants and processed immediately. Bacterial species were isolated and characterized by conventional methods. Antibiotics susceptibility testing was done using a modified Kirby Bauer method. Further analysis was done by Polymerase Chain Reaction amplification aimed to detect bla SHV, bla TEM, and bla CTX-M resistance genes.  Isolates were considered significant if there were up to 104 CFU/ml in symptomatic participants and ≥105 CFU/ml in asymptomatic participants with analyzed. Data were analyzed using the Statistical Package for Social Sciences (SPSS) version 16.0 (Inc., Chicago 111). Forty (39.6 %) males and 61 (60.4 %) female participants’ catheter urines were sampled, with male to female ratio of 1:1.5.

Fifty-nine (58.4%) out of 101 samples had significant growth, while 32 (54.2%) of these were lactose fermenters.  Of the 32 lactose fermenters, 26 were identified as E. coli and Klebsiella spp, while 23 (88.5%) of these 26 (identified as E. coli and Klebsiella spp) were ESBL producers carrying ESBL gene(s) and revealed various degrees of antibiotics resistance. We conclude by discussing the epidemiological importance of improving the infection control practices and antibiotics stewardship program as central dogma to controlling antibiotics resistance in hospitals.

References

  1. O. T. Afolabi, A. O. Onipede and D. L. Paterson. “Resistance in gram- negative bacteria: Enterobacteriaceae,” Am J Infect Control, vol. 34, pp S20-S28, 2006.
    DOI  |   Google Scholar
  2. S. K. Omotayo, C. O. Oluyede and F. O. Olajiden, “Hospital-Acquired infection in Obafemi Awolowo University Teaching Hospital, Ile Ife, South West Nigeria: A ten-year review (2000- 2009),” Sierra Leon J Biomed Sci Research. 2011; 3 vol. 3, no 2, pp 110-115, 2011.
     Google Scholar
  3. D. M. Livermore and N. Woodford, “The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter,” Trends Microbiol. pp 413-420, 2006.
    DOI  |   Google Scholar
  4. D. Morris, M. Whelhan, G. Corbett- Feeney et al., “First Report of ESBL Producing Salmonella enterica isolates in Ireland,” Antimicrob Agents Chemother, vol 50, no 4, pp 1608-1609, 2006.
    DOI  |   Google Scholar
  5. I. Pallechi, A. Bartoloni, C. Fiorelli, A. Mantella et al., “Rapid Dissemination and Diversity of CTX-M ESBL genes in commensal Escherichia coli isolated from healthy children from low resource setting in Latin America. Antimicrobial Agents and Chemotherapy, vol. 51, no 8, pp 2720-2725, 2007.
    DOI  |   Google Scholar
  6. O. Azeez-Akande, “Emerging and Re-emerging infectious agents of Nosocomial diseases: The need for a review of Hospital Policy and Control strategies,” Bayero J Pure and Applied Sciences, vol. 5, no 2, pp 19-25, 2012.
    DOI  |   Google Scholar
  7. L. Nicolle, “The chronic indwelling catheter and Urinary tract infection in a long term care facility resident,” Infection Control Hospital and Epidemiology, vol. 22, no 5, pp 316- 321, 2001.
    DOI  |   Google Scholar
  8. G. Reza, Y. Alireza and S. Simin, “Urinary Tract Infections in Hospitalized Patients from 2006 to 2009 in Madani Heart Centre Tabriz Iran,” Journal of Cardiovascular and Thoracic Research, vol. 2, no 1, pp 39-42, 2010.
     Google Scholar
  9. S. O. Samuel, O. O. Kayode, O. I. Musa, G. C. Nwigwe and A. O. Aboderin, “Nosocomial infection and the challenge of Control in Developing Countries,” African J of Clinical and Experimental Microbiology, vol.11, no 2, pp 102-110, 2010.
    DOI  |   Google Scholar
  10. J. M. Myllote, A. Tayara and S. Goodnough, “Epidemiology of Bloodstream infection in nursing home residents: evaluation in a large Cohort from multiple homes,” Clinical infectious disease, vol.35, no 12, pp 1484- 1490, 2002.
    DOI  |   Google Scholar
  11. M. E. De Kraker, M. Wokewitz, P. G. Davey et al., “The burden of Antimicrobial resistance in European Hospitals: excess mortality and length of hospital stay associated with bloodstream infections due to Escherichia coli resistant to third-generation cephalosporins,” Journal of Antimicrobial Chemotherapy, vol.66, pp 398-407, 2011.
     Google Scholar
  12. A. Stewardson, C. Frankhauser, G. De Angelis et al., “Burden of bloodstream infection caused by extended-spectrum beta-lactamases- producing Enterobacteriaceae determined using multistate modeling at a Swiss University Hospital and a nationwide predictive model,” Infection Control Hospital Epidemiology, vol. 34, pp 133-143, 2013.
    DOI  |   Google Scholar
  13. P. L. Ho, A. Y. M. Ho, K. H. Chow, C. W. River, R. S. Wong Duan et al., “Occurrence and Molecular analysis of extended-spectrum beta-lactamases Proteus mirabilis in Hong Kong 1999 to 2002,” Journal of Antimicrobial Chemotherapy, vol. 55, pp 840-845, 2005.
    DOI  |   Google Scholar
  14. M. E. De Kraker, V. Jalier, J. C. Nonen, O. E. Hever, N. Van de Sande et al., “The Changing epidemiology of bacteremias in Europe: trends from The European Antibiotics Surveillance System,” Clinical Microbiol infects. Vol.19, pp 860-868, 2012.
    DOI  |   Google Scholar
  15. B. M. Marshal and S. B. Levy, “Food animals and Antimicrobials: impacts on human health,” Clinical Microbiology Rev. vol. 24, pp 714-733, 2011.
    DOI  |   Google Scholar
  16. D. L. Paterson and R. A. Bonomo, “Extended-spectrum beta-lactamases: a clinical update,” Clinical Microbiology Reviews. 2005; vol. 18, no 4, pp 657-686, 2005.
     Google Scholar
  17. M. I. Morosini, M. García-Castillo, T. M. Coque et al., “Antibiotic co-resistance inextended-spectrum-β-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline,” Antimicrob Agents Chemother. vol. 50, no 8, pp 2695–2699, 2006.
    DOI  |   Google Scholar
  18. S. Y. Shin, K. C. Kwon, J. W. Park, J. H. Song, Y. H. Ko et al., “Characteristics of aac (6′)-Ib-cr Gene in Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Chungnam Area,” Korean J Lab Med, vol. 29, no 54, pp 1-50, 2009.
    DOI  |   Google Scholar
  19. R. Viswanathan, K. A. Singh, S. Basu, S. Chatterjee, S. Sardar et al., “Multi-drug resistant Gram-negative bacilli are causing early neonatal sepsis in India,” Arch Dis Child Fetal Neonatal Ed, vol. 97, no 3, pp 182-187, 2012.
    DOI  |   Google Scholar
  20. E. Lautenbach, J. B. Patel, W. B. Bilker, P. H. Edelstein and N. O. Fishman, “Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae: Risk factors for infection and impact of resistance on outcomes,” Clin. Infect. Dis, vol. 32, pp 1162-1171, 2001.
    DOI  |   Google Scholar
  21. S. K. Bouchillon, B. M. Johnson, D. J. Hoban, J. L. Johnson, M. J. Dowzicky and D. H. Wu, “Interscience Conference. Antimicrob. Agents Chemother. vol. 42, pp 27-30, 2002.
     Google Scholar
  22. [22] R. Colodner, W. Rock, B. Chazan, N. Keller, N. Guy, N. Sakran and R. Raz, “Risk factor for the development of extended-spectrum beta-lactamase-producing bacteria in non-hospitalized patients,” Eur. J. Clin. Microbiol. Infect. Dis, vol. 23, pp 163-167, 2004.
    DOI  |   Google Scholar
  23. H. M. Akram, N. H. Abdullahi and M. E. Dya Eldin, “Extended-spectrum beta-lactamases among multidrug-resistant Escherichia coli and Klebsiella species causing urinary tract infections in Khartoum,” Journal of Bacteriology Research, vol. 2, no 3, pp 18-21, 2010.
     Google Scholar
  24. W. L. Yu, Y. C. Chuang and J. Walther-Resmusse, “Extended-Spectrum beta-lactamases in Taiwan: Epidemiology, detection, treatment and infection control,” J Microbiol Immunolo Infect, vol. 39, no 4, pp 264-277, 2006.
     Google Scholar
  25. A. Garcia-Tello, H. Gimbernat, C. Redondo, D. M. Arana et al., “Extended Spectrum beta-lactamases in urinary tract infections caused by Enterobacteria: understanding and guidelines for action,” Actas Urol Esp. So10-4806(14)00184-3, 2014 (Epub ahead of print)
    DOI  |   Google Scholar
  26. W. E. Stamm, “Urinary Tract Infections and Pyelonephritis in Harrison’s Principles of Internal Medicine,” 16th ed., Mc GrawHills, UK. 2005; ch. 1, pp 1715 – 1721.
     Google Scholar
  27. J. Davies and D. Davies, “Origin and Evolution of Antibiotics Resistance,” Microbiology and Molecular Biology Reviews. 2010. vol. 70, no 3, pp 417-433, 2010.
    DOI  |   Google Scholar
  28. K. Lim, R. Yasin, C. Yeo, S. Puthucheary and K. Thong, “Characterization of multidrug-resistant ESBL producing Escherichia coli isolates from hospitals in Malaysia,” J. Biomed. And Biotech, Article ID 165637, pp 1-10, 2009.
    DOI  |   Google Scholar
  29. A. Hutner, S. Harbath, J. Carlet, S. Cosgrove, H. Goosens, A. Holmes, V. Jarlier, A. Voss and D. Pittet, “Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Forum,” Antimicrobial Resistance and Infection Control, vol. 2, pp 1-13, 2013.
    DOI  |   Google Scholar
  30. G. I. Ogban, E. A. Ochang, U. E. Emanghe, E. U. Usang, U. B. Akpan and T. U. Agan, “Rectal colonization with Extended-spectrum β- Lactamase producing Enterobacteriaceae in surgical patients in a tertiary hospital in Calabar, Nigeria,” Journal of Dental and Medical Sciences, vol. 13, no 1, pp 47-53, 2014.
    DOI  |   Google Scholar
  31. B. Spellberg, M. Blaser et al., “Combating antimicrobial resistance: policy recommendations to save lives,” Clin Infect Dis, vol. 52, Suppl. 5, pp S397–S428, 2011.
    DOI  |   Google Scholar
  32. O. A. Onyegbule, G. O. Udigwe, I. Ezebialu, A. C. Nduka, V. E. Okolie and O. L. Okor, “Catheter-Associated Urinary Tract Infection Following Caesarean Section in Nnewi, Nigeria: A prospective study,” British Microbiology Research Journal, vol. 4, no 9, pp 1025-1034, 2014.
    DOI  |   Google Scholar
  33. I. Sanou, A. Kabore, E. Tapsoba, I. Bicaba, A. Ba and B. Zango, “Nosocomial urinary infections at the urology unit of the National University Hospital (Yalgado Ouagadougou), Ouagadougou,” Afr. J. Clin. Exper. Microbiol, vol. 16 no. 1, pp 1-6, 2015.
    DOI  |   Google Scholar
  34. A. Onipede, T. O. Oyekale, B. Olapade, O. Olaniran, A. Oyelese and T. A. Ogunniyi, “Urinary pathogens and their antimicrobial susceptibility in patients with an indwelling urinary catheter,” Sierra Leon Journal of Biomedical Research, vol. 2, no. 1, pp 47-53, 2010
    DOI  |   Google Scholar
  35. S. S. Taiwo and A. O. A. Aderounmu, “Catheter-Associated Urinary Tract Infection: Aetiologic Agents and Antimicrobial Susceptibility Pattern in Ladoke Akintola University Teaching Hospital, Osogbo, Nigeria,” Afr J Biomed Res, vol. 9, pp 141 – 148, 2006.
    DOI  |   Google Scholar
  36. N. S. Ochada, I. A. Nasiru, Y. Thairu, M. B. Okanlowan and Y. O. Abdulakeem, “Antibiotics susceptibility pattern of urinary pathogens isolated from two tertiary hospitals in southwestern Nigeria,” Afr.J. Clin. Exper. Microbiol., vol. 16, no. 1, pp 12-22, 2014.
    DOI  |   Google Scholar
  37. A. I. Onwuezobe and F. E. Orok, “Extended-spectrum beta-lactamase-producing uropathogens in asymptomatic pregnant women attending antenatal care in an urban community secondary health facility,” Afr. J. Cln. Exper. Microbiol., vol. 16, no. 2, pp 49-53, 2015
    DOI  |   Google Scholar
  38. J. Panders, A. A. Y. Huylenbroek, K. Everaet, M. Vanlaere and G. L. C. Verschraegen, “Urinary infection in patients with Spinal cord injury,” Spinal, vol. 41, pp 549-552, 2003.
    DOI  |   Google Scholar
  39. S. Datta, C. Wattal, N. Goel, K. J. Oberoi, R. Raveendran and K. J. Prasad, “A ten-year analysis of multidrug-resistant bloodstream infections caused by E. coli and Klebsiella pneumonia in a tertiary care hospital,” Indian J. Med. Res., vol. 135, pp 907-912.
     Google Scholar
  40. J. Goswami, “Quorum sensing by superbugs and their resistance to antibiotics, a short review,” Glob J Pharmaceu Sci., vol. 3, no. 3, pp 001-007, 2017.
     Google Scholar
  41. A. Manoharan, K. Premalatha, S. Chatterjee, D. Mathai, “SARI Study Group: Correlation of TEM, SHV and CTX-M extended-spectrum beta-lactamases among Enterobacteriaceae with their in vitro antimicrobial susceptibility. Indian J. Med Microbiol, vol. 29, pp 161-164, 2011.
    DOI  |   Google Scholar
  42. F. M. Tollentino, M. Polotto, M. L. Nog, N. Lincopan, P. Neves, E. M. Mamizuka, E. M. and G. A, Remeli et al., “High Prevalence of blaCTX-M Extended-Spectrum Beta-Lactamase Genes in Klebsiella pneumoniae Isolates from a Tertiary Care Hospital,” First report of blaSHV-12, blaSHV-31, blaSHV-38, and blaCTX-M-15 in Brazil,” Microb Drug Resist. vol. 17, no. 1, pp 7–17, 2010.
    DOI  |   Google Scholar